The objective of this work was to design and build a fully mechanical knee orthosis. A knee orthosis should both allow control of the angle of flexion of the knee during the stance phase of the gait cycle and leave the joint free during the swing phase. Knee orthoses are normally used to assist the walking of people suffering from muscle weaknesses or gait pathologies in order to avoid excessive knee flexion during the stance phase. The design of the orthosis proposed in the present work is characterized by allowing the knee to be locked at any angle of flexion during the stance phase, and because the orthosis can be unlocked to allow the joint to be released in the swing phase without the action of any external agent, i.e., without requiring external electrical or electronic systems for the control and performance of the orthosis. These characteristics mean that the design can be adapted to the gait of any user. The proposed design consists of a set of three rods, one attached to the user's thigh, another to the calf, and the other to the foot, connected to each other by a self-locking planetary gear train (PGT).

References

1.
Rafiaei
,
M.
,
Bahramizadeh
,
M.
,
Arazpour
,
M.
, Samadian, M., Hutchins, S., Farahmand, F., and Mardani, M.,
2015
, “
The Gait and Energy Efficiency of Stance Control Knee-Ankle-Foot Orthoses: A Literature Review
,”
Prosthetics Orthotics Int.
,
40
(
2
), pp.
202
214
.
2.
Wang
,
W.
,
Hou
,
Z.
,
Tong
,
L.
,
Zhang
,
F.
,
Chen
,
Y.
, and
Tan
,
M.
,
2014
, “
A Novel Leg Orthosis for Lower Limb Rehabilitation Robots of the Sitting/Lying Type
,”
Mech. Mach. Theory
,
74
, pp.
337
353
.
3.
Agrawal
,
K. S.
,
2005
, “
Design of Gravity Balancing Leg Orthosis Using Non-Zero Free Length Springs
,”
Mech. Mach. Theory
,
40
(
6
), pp.
693
709
.
4.
Arakelian
,
V.
, and
Ghazaryan
,
S.
,
2008
, “
Improvement of Balancing Accuracy of Robotic Systems: Application to Leg Orthosis for Rehabilitation Devices
,”
Mech. Mach. Theory
,
43
(
5
), pp.
565
575
.
5.
Chen
,
G.
,
Qi
,
P.
,
Guo
,
Z.
, and
Yu
,
H.
,
2006
, “
Mechanical Design and Evaluation of a Compact Portable Knee–Ankle–Foot Robot for Gait Rehabilitation
,”
Mech. Mach. Theory
,
103
, pp.
51
64
.
6.
Blaya
,
J. A.
, and
Herr
,
H.
,
2004
, “
Adaptive Control of a Variable-Impedance Ankle–Foot Orthosis to Assist Drop-Foot Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
1
), pp.
24
31
.
7.
Shorter
,
K. A.
,
Kogler
,
G. F.
,
Loth
,
E.
,
Durfee
,
W. K.
, and
Hsiao-Wecksler
,
E. T.
,
2011
, “
A Portable Powered Ankle–Foot Orthosis for Rehabilitation
,”
J. Rehabil. Res. Dev.
,
48
(
4
), pp.
459
472
.
8.
Noel
,
M.
,
Cantin
,
B.
,
Lambert
,
S.
,
Gosselin
,
C. M.
, and
Bouyer
,
L. J.
,
2008
, “
An Electrohydraulic Actuated Ankle Foot Orthosis to Generate Force Fields and to Test Proprioceptive Reflexes During Human Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
16
(
4
), pp.
390
399
.
9.
Horst
,
R. W.
,
2009
, “
A Bio-Robotic Leg Orthosis for Rehabilitation and Mobility Enhancement
,”
International Conference of the IEEE Engineering in Medicine and Biology Society
, Minneapolis, MN, Sept. 3–6, pp.
5030
5033
.
10.
Fleischer
,
G. H.
,
2008
, “
A Human–Exoskeleton Interface Utilizing Electromyography
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
872
882
.
11.
Tian
,
F.
,
Hefzy
,
M. S.
, and
Elahinia
,
M.
,
2015
, “
State of the Art Review of Knee–Ankle–Foot Orthoses
,”
Ann. Biomed. Eng.
,
43
(
2
), pp.
427
441
.
12.
Shamaei
,
K.
,
Napolitano
,
C.
, and
Dollar
,
M.
,
2014
, “
Design and Functional Evaluation of a Quasi-Passive Compliant Stance Control Knee-Ankle-Foot Orthosis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
2
), pp.
258
268
.
13.
Cullell
,
A.
,
Moreno
,
J. C.
,
Rocon
,
E.
,
Forner-Cordero
,
A.
, and
Pons
,
J. L.
,
2009
, “
Biologically Based Design of an Actuator System for a Knee-Ankle-Foot Orthoses
,”
Mech. Mach. Theory
,
44
(
4
), pp.
860
872
.
14.
Sawicki
,
G. S.
, and
Ferris
,
D. P.
,
2009
, “
A Pneumatically Powered Knee–Ankle–Foot Orthosis With Myoelectric Activation and Inhibition
,”
J. Neuroeng. Rehabil.
,
6
, p.
23
.
15.
Yakimovich
,
T.
,
Kofman
,
J.
, and
Lemaire
,
E. D.
,
2009
, “
Engineering Design Review of Stance-Control Knee-Ankle-Foot Orthoses
,”
J. Rehabil. Res Dev.
,
46
(
2
), pp.
257
268
.
16.
Salgado
,
D. R.
, and
del Castillo
,
J. M.
,
2006
, “
Conditions for Self-Locking in Planetary Gear Trains
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
960
968
.
17.
Müller
,
H. W.
,
1982
,
Epicyclic Drive Trains, Analysis, Synthesis, and Applications
,
Wayne State University Press
,
Detroit, MI
.
18.
Anderson
,
N. E.
, and
Loewenthal
,
S. H.
,
1980
, “
Spur Gear System Efficiency at Part and Full Load
,” National Aeronautics and Space Administration, Washington, DC, Technical Paper No. 1622, Technical Report No. 79-46.
19.
Diab
,
Y.
,
Ville
,
F.
, and
Velex
,
P.
,
2006
, “
Prediction of Power Losses Due to Tooth Friction in Gears
,”
Tribol. Trans.
,
49
(
2
), pp.
260
270
.
20.
AGMA
,
1988
, “
Design Manual for Enclosed Epicyclic Metric Module Gear Drives
,” American Gear Manufacturers Association, Alexandria, VA, Standard No. 6123-A88.
21.
del Castillo
,
J. M.
,
2002
, “
The Analytical Expression of the Efficiency of Planetary Gear Trains
,”
Mech. Mach. Theory
,
37
(
2
), pp.
197
214
.
22.
Li
,
S.
,
2012
, “
Contact Stress and Root Stress Analyses of Thin-Rimmed Spur Gears With Inclined Webs
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051001
.
23.
Hwang
,
S. C.
,
Lee
,
J. H.
,
Lee
,
D. H.
,
Hana
,
S. H.
, and
Lee
,
K. H.
,
2013
, “
Contact Stress Analysis for a Pair of Mating Gears
,”
Math. Comput. Modell.
,
57
(
1–2
), pp.
40
49
.
24.
Patil
,
S.
,
Karuppanan
,
S.
,
Atanasovska
,
I.
, and
Wahab
,
A. A.
,
2014
, “
Frictional Tooth Contact Analysis Along Line of Action of a Spur Gear Using Finite Element Method
,”
Proc. Mater. Sci.
,
5
, pp.
1801
1809
.
You do not currently have access to this content.