The polytope-based tolerance analysis in design process uses a finite set of constraints to represent specifications and propagates these constraints to any objective point in the Euclidean space. The operations of Minkowski sum and intersection on polytopes are well suited to serial and parallel assemblies. The polytope model has been applied to complex assemblies which contain a large number of joints and geometrical tolerances. However, the previous studies on this model consider toleranced features as surfaces of perfect form. The ignorance of form defects in tolerance analysis would result in a significant loss in accuracy and reliability. In this paper, an extension of the polytope model for tolerance analysis considering form defects is described in which the skin model shape representing the physical shape of the product is adopted to simulate the actual toleranced feature in place of the substitute one used conventionally. The combination of polytope model and skin model shape is expected to inherit many of the advantages of each model, combining easy-to-use tolerance propagation and form defects representation with accuracy guarantees. To demonstrate the method and its respective application, a case study of an assembly is illustrated in detail. The proposed method further enhances the capability of the polytope model in handling form defects and provides more realistic assembly results that approximate the actual assembly conditions for design evaluation.

References

References
1.
Chen
,
H.
,
Jin
,
S.
,
Li
,
Z.
, and
Lai
,
X.
,
2014
, “
A Comprehensive Study of Three Dimensional Tolerance Analysis Methods
,”
Comput.-Aided Des.
,
53
(5), pp.
1
13
.
2.
Desrochers
,
A.
, and
Clément
,
A.
,
1994
, “
A Dimensioning and Tolerancing Assistance Model for CAD/CAM Systems
,”
Int. J. Adv. Manuf. Technol.
,
9
(
6
), pp.
352
361
.
3.
Desrochers
,
A.
, and
Rivière
,
A.
,
1997
, “
A Matrix Approach to the Representation of Tolerance Zones and Clearances
,”
Int. J. Adv. Manuf. Technol.
,
13
(
9
), pp.
630
636
.
4.
Gao
,
J.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
,
1998
, “
Generalized 3-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments
,”
IIE Trans.
,
30
(
4
), pp.
367
377
.
5.
Lafond
,
P.
, and
Laperriere
,
L.
,
1999
, “
Jacobian-Based Modeling of Dispersions Affecting Pre-Defined Functional Requirements of Mechanical Assemblies
,”
IEEE International Symposium on Assembly and Task Planning
(
ISATP'99
), Porto, Portugal, July 21–24, pp.
20
25
.
6.
Bourdet
,
P.
,
Mathieu
,
L.
,
Lartigue
,
C.
, and
Ballu
,
A.
,
1996
, “
The Concept of Small Displacement Torsor in Metrology
,”
Ser. Adv. Math. Appl. Sci.
,
40
, pp.
110
122
.https://www.researchgate.net/publication/236660854_The_concept_of_the_small_displacement_torsor_in_metrology
7.
Ghie
,
W.
,
Laperrière
,
L.
, and
Desrochers
,
A.
,
2003
,
A Unified Jacobian-Torsor Model for Analysis in Computer Aided Tolerancing
,
Springer
, Dordrecht,
The Netherlands
.
8.
Davidson
,
J. K.
,
Mujezinović
,
A.
, and.,
Shah
,
J. J.
,
2002
, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
609
622
.
9.
Giordano
,
M.
,
Kataya
,
B.
, and
Pairel
,
E.
,
2001
,
Tolerance Analysis and Synthesis by Means of Clearance and Deviation Spaces
,
Springer
, Dordrecht,
The Netherlands
.
10.
Mansuy
,
M.
,
Giordano
,
M.
, and
Davidson
,
J. K.
,
2013
, “
Comparison of Two Similar Mathematical Models for Tolerance Analysis: T-Map and Deviation Domain
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101008
.
11.
Homri
,
L.
,
Teissandier
,
D.
, and
Ballu
,
A.
,
2013
,
Tolerancing Analysis by Operations on Polytopes
, Springer, Berlin, Germany, pp.
597
604
.
12.
Anwer
,
N.
,
Ballu
,
A.
, and
Mathieu
,
L.
,
2013
, “
The Skin Model, a Comprehensive Geometric Model for Engineering Design
,”
CIRP Ann.
,
62
(
1
), pp.
143
146
.
13.
Teissandier
,
D.
, and
Delos
,
V.
,
2011
, “
Algorithm to Calculate the Minkowski Sums of 3-Polytopes Based on Normal Fans
,”
Comput.-Aided Des.
,
43
(
12
), pp.
1567
1576
.
14.
Arroyave-Tobón
,
S.
,
Teissandier
,
D.
, and
Delos
,
V.
,
2017
, “
Tolerance Analysis With Polytopes in HV-Description
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
4
), p.
041011
.
15.
Gouyou
,
D.
,
Ledoux
,
Y.
,
Teissandier
,
D.
, and
Delos
,
V.
, 2015, “
Tolerance Analysis by Polytopes: Taking Into Account Deformation in Parallel Assemblies
,”
International Virtual Concept Workshop on INDUSTRIE 4.0
, San Sebastian, Spain, Nov. 26–27.
16.
Gouyou
,
D.
,
Ledoux
,
Y.
,
Teissandier
,
D.
, and
Delos
,
V.
,
2018
, “
Tolerance Analysis of Overconstrained and Flexible Assemblies by Polytopes and Finite Element Computations: Application to a Flange
,”
Res. Eng. Des.
,
29
(
1
), pp.
55
66
.
17.
Gouyou
,
D.
,
Teissandier
,
D.
, and
Delos
,
V.
,
2016
, “
Tolerance Analysis by Polytopes: Application to Assembly Interferences Diagnosis
,”
Procedia CIRP
,
43
, pp.
52
57
.
18.
Ledoux
,
Y.
,
Teissandier
,
D.
, and
Delos
,
V.
,
2018
, “
Fast Analysis of Compliant Assembly
,”
Procedia CIRP
,
70
, pp.
138
143
.
19.
Arroyave-Tobón
,
S.
,
2017
,
Polyhedral Models Reduction in Geometric Tolerance Analysis
, Doctoral dissertation, Université de Bordeaux, France.
20.
Arroyave-Tobón
,
S.
,
Teissandier
,
D.
, and
Delos
,
V.
,
2017
, “
Applying Screw Theory for Summing Sets of Constraints in Geometric Tolerancing
,”
Mech. Mach. Theory
,
112
, pp.
255
271
.
21.
Anwer
,
N.
,
Schleich
,
B.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
From Solid Modelling to Skin Model Shapes: Shifting Paradigms in Computer-Aided Tolerancing
,”
CIRP Ann.
,
63
(
1
), pp.
137
140
.
22.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Patalano
,
S.
,
2011
, “
Simulation of Variational Compliant Assemblies With Shape Errors Based on Morphing Mesh Approach
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1–4
), pp.
47
61
.
23.
Adragna
,
P. A.
,
Samper
,
S.
,
Pillet
,
M.
, and
Favreliere
,
H.
,
2006
, “
Analysis of Shape Deviations of Measured Geometries With a Modal Basis
,”
J. Mach. Eng.
,
6
(
1
), pp.
144
149
.http://www.not.pl/wydawnictwo/abstract.html
24.
Yan
,
X.
, and
Ballu
,
A.
,
2016
, “
Toward an Automatic Generation of Part Models With Form Error
,”
Procedia CIRP
,
43
, pp.
23
28
.
25.
Schleich
,
B.
, and
Wartzack
,
S.
,
2014
, “
A Discrete Geometry Approach for Tolerance Analysis of Mechanism
,”
Mech. Mach. Theory
,
77
, pp.
148
163
.
26.
Homri
,
L.
,
Teissandier
,
D.
, and
Ballu
,
A.
,
2015
, “
Tolerance Analysis by Polytopes: Taking Into Account Degrees of Freedom With Cap Half-Spaces
,”
Comput.-Aided Des.
,
62
, pp.
112
130
.
27.
Pierre
,
L.
,
Teissandier
,
D.
, and
Nadeau
,
J. P.
,
2009
, “
Integration of Thermomechanical Strains Into Tolerancing Analysis
,”
Int. J. Interact. Des. Manuf.
,
3
(
4
), pp.
247
263
.
28.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
Skin Model Shapes: A New Paradigm Shift for Geometric Variations Modelling in Mechanical Engineering
,”
Comput.-Aided Des.
,
50
, pp.
1
15
.
29.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
, 2015, “
Skin Model Shapes: Offering New Potentials for Modelling Product Shape Variability
,”
ASME
Paper No.
DETC2015-46701.
30.
Schleich
,
B.
, and
Wartzack
,
S.
,
2015
, “
Approaches for the Assembly Simulation of Skin Model Shapes
,”
Comput.-Aided Des.
,
65
, pp.
18
33
.
31.
Samper
,
S.
,
Adragna
,
P.-A.
,
Favreliere
,
H.
, and
Pillet
,
M.
,
2009
, “
Modeling of 2D and 3D Assemblies Taking Into Account Form Errors of Plane Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
041005
.
32.
Homri
,
L.
,
Goka
,
E.
,
Levasseur
,
G.
, and
Dantan
,
J.-Y.
,
2017
, “
Tolerance Analysis—Form Defects Modeling and Simulation by Modal Decomposition and Optimization
,”
Comput.-Aided Des.
,
91
, pp.
46
59
.
33.
Schleich
,
B.
, and
Wartzack
,
S.
,
2013
, “
The Implications of the Skin Model Concept for Computer Aided Tolerancing
,”
Smart Product Engineering
, M. Abramovici and R. Stark, ed(s)., Springer, Berlin, Germany, pp.
573
582
.https://link.springer.com/chapter/10.1007/978-3-642-30817-8_56#citeas
34.
Schleich
,
B.
, and
Wartzack
,
S.
,
2018
, “
Novel Approaches for the Assembly Simulation of Rigid Skin Model Shapes in Tolerance Analysis
,”
Comput.-Aided Des.
,
101
, pp.
1
11
.
35.
Pierre
,
L.
,
Teissandier
,
D.
, and
Nadeau
,
J. P.
,
2014
, “
Variational Tolerancing Analysis Taking Thermomechanical Strains Into Account: Application to a High Pressure Turbine
,”
Mech. Mach. Theory
,
74
, pp.
82
101
.
36.
Garaizar
,
O. R.
,
Qiao
,
L.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2016
, “
Integration of Thermal Effects Into Tolerancing Using Skin Model Shapes
,”
Procedia CIRP
,
43
, pp.
196
201
.
37.
Yang
,
X.
,
Zhan
,
Z.
,
Jiang
,
N.
,
Yang
,
J.
, and
Lu
,
J.
,
2017
, “
A Similarity Evaluation Metric for Mesh Based CAE Model Simplification and Its Application on Vehicle
,”
SAE
Technical Paper No. 2017-01-1332
.
38.
Dyer
,
R.
,
Zhang
,
H.
, and
Möller
,
T.
,
2007
, “
Delaunay Mesh Construction
,” Proceedings of the 5th Eurographics Symposium on Geometry Processing (
SGP '07
), Barcelona, Spain, July 4–6, pp. 273–282.https://dl.acm.org/citation.cfm?id=1282027
You do not currently have access to this content.