Three-dimensional (3D) weaving has recently arisen as viable means for manufacturing metallic, architected microlattices. Herein, we describe a topology optimization approach for designing the architecture of such 3D woven lattices. A ground structure design variable representation is combined with linear manufacturing constraints and a projection mapping to realize lattices that satisfy the rather restrictive topological constraints associated with 3D weaving. The approach is demonstrated in the context of inverse homogenization to design lattices with maximized fluid permeability. Stokes flow equations with no-slip conditions governing unit cell flow fields are interpolated using the Darcy–Stokes finite element model, leveraging existing work in the topology optimization of fluids. The combined algorithm is demonstrated to design manufacturable lattices with maximized permeability whose properties have been experimentally measured in other published work.

References

References
1.
Yushanov
,
S. P.
,
Bogdanovich
,
A. E.
, and
Mohamed
,
M. H.
,
1999
, “
Manufacturing and Property Analysis of a Novel Class of 3-D Woven Composites
,”
J. Thermoplast. Compos. Mater.
,
12
(
1
), pp.
70
82
.
2.
Mohamed
,
M. H.
,
Bogdanovich
,
A. E.
,
Dickinson
,
L. C.
,
Singletary
,
J. N.
, and
Lienhart
,
R. B.
,
2001
, “
A New Generation of 3D Woven Fabric Preforms and Composites
,”
Sampe J.
,
37
(
3
), pp.
8
17
.
3.
Huang
,
T.
,
Wang
,
Y.
, and
Wang
,
G.
,
2017
, “
Review of the Mechanical Properties of a 3D Woven Composite and Its Applications
,”
Polym. Plast. Technol. Eng.
,
57
(
8
), pp.
740
756
.
4.
Mouritz
,
A. P.
,
Bannister
,
M. K.
,
Falzon
,
P. J.
, and
Leong
,
K. H.
,
1999
, “
Review of Applications for Advanced Three-Dimensional Fibre Textile Composites
,”
Composites, Part A
,
30
(
12
), pp.
1445
1461
.
5.
Zhao
,
L.
,
Ha
,
S.
,
Sharp
,
K. W.
,
Geltmacher
,
A. B.
,
Fonda
,
R. W.
,
Kinsey
,
A. H.
,
Zhang
,
Y.
,
Ryan
,
S. M.
,
Erdeniz
,
D.
,
Dunand
,
D. C.
,
Hemker
,
K. J.
,
Guest
,
J. K.
, and
Weihs
,
T. P.
,
2014
, “
Permeability Measurements and Modeling of Topology-Optimized Metallic 3-D Woven Lattices
,”
Acta Mater.
,
81
, pp.
326
336
.
6.
Zhao
,
L.
,
Ryan
,
S. M.
,
Ortega
,
J. K.
,
Ha
,
S.
,
Sharp
,
K. W.
,
Guest
,
J. K.
,
Hemker
,
K. J.
, and
Weihs
,
T. P.
,
2016
, “
Experimental Investigation of 3D Woven Cu Lattices for Heat Exchanger Applications
,”
Int. J. Heat Mass Transf.
,
96
, pp.
296
311
.
7.
Zhao
,
L.
,
Ryan
,
S. M.
,
Lin
,
S.
,
Xue
,
J.
,
Ha
,
S.
,
Igusa
,
T.
,
Sharp
,
K. W.
,
Guest
,
J. K.
,
Hemker
,
K. J.
, and
Weihs
,
T. P.
,
2017
, “
Combining a Distributed Flow Manifold and 3D Woven Metallic Lattices to Enhance Fluidic and Thermal Properties for Heat Transfer Applications
,”
Int. J. Heat Mass Transf.
,
108
, pp.
2169
2180
.
8.
Zhang
,
Y.
,
Ha
,
S.
,
Sharp
,
K.
,
Guest
,
J. K.
,
Weihs
,
T. P.
, and
Hemker
,
K. J.
,
2015
, “
Fabrication and Mechanical Characterization of 3D Woven Cu Lattice Materials
,”
Mater. Des.
,
85
, pp.
743
751
.
9.
Ryan
,
S. M.
,
Szyniszewski
,
S.
,
Ha
,
S.
,
Xiao
,
R.
,
Nguyen
,
T. D.
,
Sharp
,
K. W.
,
Weihs
,
T. P.
,
Guest
,
J. K.
, and
Hemker
,
K. J.
,
2015
, “
Damping Behavior of 3D Woven Metallic Lattice Materials
,”
Scr. Mater.
,
106
, pp.
1
4
.
10.
Wadley
,
H. N.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Philos. Trans. R. Soc.
,
364
(
1838
), pp.
31
68
.
11.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A
,
466
(
2121
), pp.
2495
2516
.
12.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.
13.
Torrents
,
A.
,
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Carter
,
W. B.
, and
Valdevit
,
L.
,
2012
, “
Characterization of Nickel-Based Microlattice Materials With Structural Hierarchy From the Nanometer to the Millimeter Scale
,”
Acta Mater.
,
60
(
8
), pp.
3511
3523
.
14.
Maloney
,
K. J.
,
Fink
,
K. D.
,
Schaedler
,
T. A.
,
Kolodziejska
,
J. A.
,
Jacobsen
,
A. J.
, and
Roper
,
C. S.
,
2012
, “
Multifunctional Heat Exchangers Derived From Three-Dimensional Micro-Lattice Structures
,”
Int. J. Heat Mass Transf.
,
55
(
9–10
), pp.
2486
2493
.
15.
Lee
,
M.-G.
, and
Kang
,
K.-J.
,
2014
, “
Mechanical Properties of Three Variations of a Wire-Woven Metal Subjected to Shear
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4504
4518
.
16.
Sigmund
,
O.
,
1994
, “
Materials With Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids Struct.
,
31
(
17
), pp.
2313
2329
.
17.
Cadman
,
J. E.
,
Zhou
,
S.
,
Chen
,
Y.
, and
Li
,
Q.
,
2013
, “
On Design of Multi-Functional Microstructural Materials
,”
J. Mater. Sci.
,
48
(
1
), pp.
51
66
.
18.
Osanov
,
M.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization for Architected Materials Design
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
211
233
.
19.
Guest
,
J. K.
, and
Prévost
,
J. H.
,
2007
, “
Design of Maximum Permeability Material Structures
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
4–6
), pp.
1006
1017
.
20.
Jung
,
Y.
, and
Torquato
,
S.
,
2005
, “
Fluid Permeabilities of Triply Periodic Minimal Surfaces
,”
Phys. Rev. E
,
72
(
5 Pt 2
), p.
056319
.
21.
Guest
,
J. K.
, and
Prévost
,
J. H.
,
2006
, “
Optimizing Multifunctional Materials: Design of Microstructures for Maximized Stiffness and Fluid Permeability
,”
Int. J. Solids Struct.
,
43
(
22–23
), pp.
7028
7047
.
22.
Challis
,
V. J.
,
Guest
,
J. K.
,
Grotowski
,
J. F.
, and
Roberts
,
A. P.
,
2012
, “
Computationally Generated Cross-Property Bounds for Stiffness and Fluid Permeability Using Topology Optimization
,”
Int. J. Solids Struct.
,
49
(
23–24
), pp.
3397
3408
.
23.
Chen
,
Y.
,
Schellekens
,
M.
,
Zhou
,
S.
,
Cadman
,
J.
,
Li
,
W.
,
Appleyard
,
R.
, and
Li
,
Q.
,
2011
, “
Design Optimization of Scaffold Microstructures Using Wall Shear Stress Criterion Towards Regulated Flow-Induced Erosion
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081008
.
24.
Chen
,
Y.
,
Zhou
,
S.
, and
Li
,
Q.
,
2011
, “
Microstructure Design of Biodegradable Scaffold and Its Effect on Tissue Regeneration
,”
Biomaterials
,
32
(
22
), pp.
5003
5014
.
25.
Challis
,
V. J.
,
Roberts
,
A. P.
,
Grotowski
,
J. F.
,
Zhang
,
L. C.
, and
Sercombe
,
T. B.
,
2010
, “
Prototypes for Bone Implant Scaffolds Designed Via Topology Optimization and Manufactured by Solid Freeform Fabrication
,”
Adv. Eng. Mater.
,
12
(
11
), pp.
1106
1110
.
26.
Hollister
,
S. J.
,
2009
, “
Scaffold Design and Manufacturing: From Concept to Clinic
,”
Adv. Mater.
,
21
(
32–33
), pp.
3330
3342
.
27.
Andreasen
,
C. S.
, and
Sigmund
,
O.
,
2011
, “
Saturated Poroelastic Actuators Generated by Topology Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
5
), pp.
693
706
.
28.
Kirsch
,
U.
,
1989
, “
Optimal Topologies of Truss Structures
,”
Comput. Methods Appl. Mech. Eng.
,
72
(
1
), pp.
15
28
.
29.
Bendsoe
,
M. P.
,
Ben-Tal
,
A.
, and
Zowe
,
J.
,
1994
, “
Optimization Methods for Truss Geometry and Topology Design
,”
Struct. Multidiscip. Optim.
,
7
(
3
), pp.
141
159
.
30.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
31.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
.
32.
Guest
,
J. K.
,
2009
, “
Topology Optimization With Multiple Phase Projection
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
1–4
), pp.
123
135
.
33.
Guest
,
J. K.
, and
Smith Genut
,
L. C.
,
2010
, “
Reducing Dimensionality in Topology Optimization Using Adaptive Design Variable Fields
,”
Int. J. Numer. Methods Eng.
,
81
(
8
), pp.
1019
1045
.
34.
Guest
,
J. K.
,
2011
, “
A Projection-Based Topology Optimization Approach to Distributing Discrete Features in Structures and Materials
,”
Ninth World Congress on Structural and Multidisciplinary Optimization
, Shizuoka, Japan, June 13–17, pp.
1
10
.
35.
Ha
,
S.
, and
Guest
,
J. K.
,
2014
, “
Optimizing Inclusion Shapes and Patterns in Periodic Materials Using Discrete Object Projection
,”
Struct. Multidiscip. Optim.
,
50
(
1
), pp.
65
80
.
36.
Guest
,
J. K.
,
2015
, “
Optimizing the Layout of Discrete Objects in Structures and Materials: A Projection-Based Topology Optimization Approach
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
330
351
.
37.
Guest
,
J. K.
,
2014
, “
Projection-Based Topology Optimization Using Discrete Object Sets
,”
ASME
Paper No. DETC2014-35213.
38.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
39.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
.
40.
Guo
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
.
41.
Sanchez-Palencia
,
E.
,
1980
,
Non-Homogeneous Media and Vibration Theory
,
Springer
,
Berlin
.
42.
Rubinstein
,
J.
, and
Torquato
,
S.
,
1989
, “
Flow in Random Porous-Media—Mathematical Formulation, Variational-Principles, and Rigorous Bounds
,”
J. Fluid Mech.
,
206
(
1
), pp.
25
46
.
43.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.
44.
Guest
,
J. K.
, and
Prévost
,
J. H.
,
2006
, “
Topology Optimization of Creeping Fluid Flows Using a Darcy-Stokes Finite Element
,”
Int. J. Numer. Methods Eng.
,
66
(
3
), pp.
461
484
.
45.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Balestra
,
M.
,
1986
, “
A New Finite Element Formulation for Computational Fluid Dynamics—V: Circumventing the Babuška–Brezzi Condition: A Stable Petrov–Galerkin Formulation of the Stokes Problem Accommodating Equal-Order Interpolations
,”
Comput. Methods Appl. Mech. Eng.
,
59
(
1
), pp.
85
99
.
46.
Masud
,
A.
, and
Hughes
,
T. J. R.
,
2002
, “
A Stabilized Mixed Finite Element Method for Darcy Flow
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
39–40
), pp.
4341
4370
.
47.
Wang
,
S. Y.
,
Tai
,
K.
, and
Wang
,
M. Y.
,
2006
, “
An Enhanced Genetic Algorithm for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
(
1
), pp.
18
44
.
48.
Stolpe
,
M.
,
2016
, “
Truss Optimization With Discrete Design Variables: A Critical Review
,”
Struct. Multidiscip. Optim.
,
53
(
2
), pp.
349
374
.
49.
Guest
,
J. K.
, and
Igusa
,
T.
,
2008
, “
Structural Optimization Under Uncertain Loads and Nodal Locations
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
1
), pp.
116
124
.
50.
Sigmund
,
O.
,
2009
, “
Manufacturing Tolerant Topology Optimization
,”
Acta Mech. Sin. Xuebao
,
25
(
2
), pp.
227
239
.
51.
Asadpoure
,
A.
,
Tootkaboni
,
M.
, and
Guest
,
J. K.
,
2011
, “
Robust Topology Optimization of Structures With Uncertainties in Stiffness—Application to Truss Structures
,”
Comput. Struct.
,
89
(
11–12
), pp.
1131
1141
.
You do not currently have access to this content.