When simulations are expensive and multiple realizations are necessary, as is the case in uncertainty propagation, statistical inference, and optimization, surrogate models can achieve accurate predictions at low computational cost. In this paper, we explore options for improving the accuracy of a surrogate if the modeled phenomenon presents symmetries. These symmetries allow us to obtain free information and, therefore, the possibility of more accurate predictions. We present an analytical example along with a physical example that has parametric symmetries. Although imposing parametric symmetries in surrogate models seems to be a trivial matter, there is not a single way to do it and, furthermore, the achieved accuracy might vary. We present four different ways of using symmetry in surrogate models. Three of them are straightforward, but the fourth is original and based on an optimization of the subset of points used. The performance of the options was compared with 100 random designs of experiments (DoEs) where symmetries were not imposed. We found that each of the options to include symmetries performed the best in one or more of the studied cases and, in all cases, the errors obtained imposing symmetries were substantially smaller than the worst cases among the 100. We explore the options for using symmetries in two surrogates that present different challenges and opportunities: Kriging and linear regression. Kriging is often used as a black box; therefore, we consider approaches to include the symmetries without changes in the main code. On the other hand, since linear regression is often built by the user; owing to its simplicity, we consider also approaches that modify the linear regression basis functions to impose the symmetries.

References

References
1.
Eldred
,
M. S.
,
Swiler
,
L. P.
, and
Tang
,
G.
,
2011
, “
Mixed Aleatory-Epistemic Uncertainty Quantification With Stochastic Expansions and Optimization-Based Interval Estimation
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1092
1113
.
2.
Perdikaris
,
P.
,
Venturi
,
D.
,
Royset
,
J.
, and
Karniadakis
,
G.
,
2015
, “
Multi-Fidelity Modelling Via Recursive Co-Kriging and Gaussian–Markov Random Fields
,”
Proc. R. Soc. A
,
471
(
2179
), p. 20150018.
3.
Opgenoord
,
M. M.
,
Allaire
,
D. L.
, and
Willcox
,
K. E.
,
2016
, “
Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111410
.
4.
Elsheikh
,
A. H.
,
Wheeler
,
M. F.
, and
Hoteit
,
I.
,
2014
, “
Hybrid Nested Sampling Algorithm for Bayesian Model Selection Applied to Inverse Subsurface Flow Problems
,”
J. Comput. Phys.
,
258
, pp.
319
337
.
5.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Machine Learning of Linear Differential Equations Using Gaussian Processes
,”
J. Comput. Phys.
,
348
, pp.
683
693
.
6.
Galvan
,
E.
,
Malak
,
R. J.
,
Gibbons
,
S.
, and
Arroyave
,
R.
,
2017
, “
A Constraint Satisfaction Algorithm for the Generalized Inverse Phase Stability Problem
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011401
.
7.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. of London A: Math., Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
.
8.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2013
, “
Efficient Global Surrogate Modeling for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
135
(
1
), p. 011009.
9.
Viana
,
F. A.
,
Simpson
,
T. W.
,
Balabanov
,
V.
, and
Toropov
,
V.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come?
,”
AIAA J.
,
52
(
4
), pp.
670
690
.
10.
Fernández-Godino
,
M. G.
,
Park
,
C.
,
Kim
,
N.-H.
, and
Haftka
,
R. T.
,
2016
, “
Review of Multi-Fidelity Models
,” Preprint
arXiv: 1609.07196.
https://arxiv.org/abs/1609.07196
11.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.
12.
Simpson
,
T. W.
,
Poplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
13.
Myers
,
R. H.
,
Anderson-Cook
,
C. M.
, and
Montgomery
,
D. C.
,
2016
,
Wiley Series in Probability and Statistics: Response Surface Methodology: Process and Product Optimization Using Designed Experiments
, Wiley, Hoboken, NJ.
14.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
15.
Beatovic
,
D.
,
Levin
,
P.
,
Sadovic
,
S.
, and
Hutnak
,
R.
,
1992
, “
A Galerkin Formulation of the Boundary Element Method for Two-Dimensional and Axi-Symmetric Problems in Electrostatics
,”
IEEE Trans. Electr. Insul.
,
27
(
1
), pp.
135
143
.
16.
Rahnamayan
,
S.
,
Tizhoosh
,
H. R.
, and
Salama
,
M. M.
,
2008
, “
Opposition-Based Differential Evolution
,”
IEEE Trans. Evol. Comput.
,
12
(
1
), pp.
64
79
.
17.
Bai
,
Y.
,
de Klerk
,
E.
,
Pasechnik
,
D.
, and
Sotirov
,
R.
,
2009
, “
Exploiting Group Symmetry in Truss Topology Optimization
,”
Optim. Eng.
,
10
(
3
), pp.
331
349
.
18.
Deng
,
Y.
,
Liu
,
Y.
, and
Zhou
,
D.
,
2015
, “
An Improved Genetic Algorithm With Initial Population Strategy for Symmetric TSP
,”
Math. Probl. Eng.
,
2015
, p. 212794.
19.
Liu
,
R.
,
Vanka
,
S. P.
, and
Thomas
,
B. G.
,
2014
, “
Particle Transport and Deposition in a Turbulent Square Duct Flow With an Imposed Magnetic Field
,”
ASME J. Fluids Eng.
,
136
(
12
), p. 121201.
20.
Nissim
,
E.
, and
Haftka
,
R.
,
1985
, “
Optimization of Cascade Blade Mistuning—II: Global Optimum and Numerical Optimization
,”
AIAA J.
,
23
(
9
), pp.
1402
1410
.
21.
Griffiths
,
D. J.
,
2005
, Introduction to Electrodynamics, Cambridge University Press, Cambridge, UK.
22.
Fernandez-Godino
,
M. G.
,
Diggs
,
A.
,
Park
,
C.
,
Kim
,
N.-H.
, and
Haftka
,
R. T.
,
2016
, “
Anomaly Detection Using Groups of Simulations
,”
AIAA
Paper No. 2016-1195.
23.
Rasmussen
,
C. E.
,
2004
, “
Gaussian Processes in Machine Learning
,”
Advanced Lectures on Machine Learning
,
Springer
, Berlin, pp.
63
71
.
24.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
, “DACE: A Matlab Kriging Toolbox Vol. 2,” University Park, Pennsylvania, United States.
25.
Jekabsons
,
G.
,
2009
, “
RBF: Radial Basis Function Interpolation for MATLAB/Octave
,”
Latvia
Version, 1, Riga Technical University Press, Riga, Latvia.
26.
Gunn
,
S. R.
,
1998
, “
Support Vector Machines for Classification and Regression
,”
ISIS Tech. Rep.
,
14
(
1
), pp.
5
16
.http://ce.sharif.ir/courses/85-86/2/ce725/resources/root/LECTURES/SVM.pdf
27.
Thacker
,
W. I.
,
Zhang
,
J.
,
Watson
,
L. T.
,
Birch
,
J. B.
,
Iyer
,
M. A.
, and
Berry
,
M. W.
,
2010
, “
Algorithm 905: Sheppack: Modified Shepard Algorithm for Interpolation of Scattered Multivariate Data
,”
ACM Trans. Math. Software (TOMS)
,
37
(
3
), p.
34
.https://vtechworks.lib.vt.edu/bitstream/handle/10919/20262/sheppack.pdf?sequence=3&isAllowed=y
28.
FAC Viana,
2011
, “
Surrogates Toolbox User Guide
,” Version 3.0, FAC Viana, Gainesville, FL, accessed Dec. 3, 2018, https://sites.google.com/site/srgtstoolbox/
29.
Annamalai
,
S.
,
Rollin
,
B.
,
Ouellet
,
F.
,
Neal
,
C.
,
Jackson
,
T. L.
, and
Balachandar
,
S.
,
2016
, “
Effects of Initial Perturbations in the Early Moments of an Explosive Dispersal of Particles
,”
ASME J. Fluids Eng.
,
138
(
7
), p. 070903.
30.
Liou
,
M. S.
,
1996
, “
A Sequel to AUSM: AUSM+
,”
J. Comput. Phys.
,
129
(
2
), pp.
364
382
.
31.
Liou
,
M. S.
,
2006
, “
A Sequel to AUSM—Part II: AUSM+-Up for All Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
.
32.
Ouellet
,
F.
,
Annamalai
,
S.
, and
Rollin
,
B.
,
2017
, “
Effect of a Bimodal Initial Particle Volume Fraction Perturbation in an Explosive Dispersal of Particles
,”
AIP Conf. Proc.
,
1793
(1), p. 150011.
33.
Fernandez-Godino
,
M. G.
,
Haftka
,
R. T.
,
Balachandar
,
S.
,
Gogu
,
C.
,
Bartoli
,
N.
, and
Dubreuil
,
S.
,
2018
, “
Noise Filtering and Uncertainty Quantification in Surrogate Based Optimization
,”
AIAA
Paper No. 2018-2176.
34.
Forrester
,
A. I. J.
,
Keane
,
A. J.
, and
Bressloff
,
N. W.
,
2006
, “
Design and Analysis of ‘Noisy’ Computer Experiments
,”
AIAA J.
,
44
(
10
), pp.
2331
2339
.
35.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Zeng
,
N.
,
2006
, “
Global Optimization of Stochastic Black-Box Systems Via Sequential Kriging Meta-Models
,”
J. Global Optim.
,
34
(
3
), pp.
441
466
.
36.
Ankenman
,
B.
,
Nelson
,
B. L.
, and
Staum
,
J.
,
2010
, “
Stochastic Kriging for Simulation Metamodeling
,”
Oper. Res.
,
58
(
2
), pp.
371
382
.
You do not currently have access to this content.