In order to accurately predict ring gear deformations and to investigate the effects of ring gear flexibility on quasi-static behaviors of planetary gear sets, a complete load distribution model of planetary gear sets having flexible ring gears will be formulated here based on the baseline model proposed by the same authors (Hu, Y., Talbot, D., and Kahraman, A., 2018, “A Load Distribution Model for Planetary Gear Sets,” ASME J. Mech. Des., 140(5), p. 053302). Direct comparisons to published experiments are provided to assess the accuracy of the proposed load distribution methodology. Example analyses with flexible ring gear rims are performed indicating that ring gear flexibility could influence gear mesh-level and planetary gear set system-level behaviors. Influence of spline supporting a ring gear is also investigated revealing that positions of planet branches with respect to external splines could influence ring deflections and resultant gear mesh load distributions.

References

References
1.
Hu
,
Y.
,
Talbot
,
D.
, and
Kahraman
,
A.
,
2018
, “
A Load Distribution Model for Planetary Gear Sets
,”
ASME J. Mech. Des.
,
140
(
5
), p.
053302
.
2.
Kahraman
,
A.
, and
Vijayakar
,
S.
,
2001
, “
Effect of Internal Gear Flexibility on the Quasi-Static Behavior of a Planetary Gear Set
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
408
415
.
3.
Kahraman
,
A.
,
Kharazi
,
A. A.
, and
Umrani
,
M.
,
2003
, “
A Deformable Body Dynamic Analysis of Planetary Gears With Thin Rims
,”
J. Sound Vib.
,
262
(
3
), pp.
752
768
.
4.
Ligata
,
H.
,
2007
, “
Impact of System-Level Factors on Planetary Gear Set Behavior
,”
Ph.D. dissertation
, The Ohio State University, Columbus, OH.http://rave.ohiolink.edu/etdc/view?acc_num=osu1172599656
5.
Kahraman
,
A.
,
Ligata
,
H.
, and
Singh
,
A.
,
2009
, “
Closed-Form Planet Load Sharing Formula for Planetary Gear Set Using a Translational Analogy
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021007
.
6.
Kahraman
,
A.
,
Ligata
,
H.
, and
Singh
,
A.
,
2010
, “
Influence of Ring Gear Rim Thickness on Planetary Gear Set Behavior
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021002
.
7.
Hidaka
,
T.
,
Terauchi
,
Y.
, and
Nagamura
,
K.
,
1979
, “
Dynamic Behavior of Planetary Gear—7th Report, Influence of the Thickness of the Ring Gear
,”
Bull. JSME
,
22
(
170
), pp.
1142
1149
.
8.
Hidaka
,
T.
,
Ishida
,
T.
, and
Uchida
,
F.
,
1984
, “
Effects of Rim Thickness and Number of Teeth on Bending Stress of Internal Gears
,”
Bull. JSME
,
27
(
223
), pp.
110
116
.
9.
Lewicki
,
D. G.
, and
Ballarini
,
R.
,
1997
, “
Effect of Rim Thickness on Gear Crack Propagation Path
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
88
95
.
10.
Oda
,
S.
,
Nagamura
,
K.
, and
Aoki
,
K.
,
1981
, “
Stress Analysis of Thin Rim Spur Gears by Finite Element Method
,”
Bull. JSME
,
24
(
193
), pp.
1273
1280
.
11.
Chang
,
S. H.
,
Huston
,
R. L.
, and
Coy
,
J. J.
,
1983
, “
A Finite Element Stress Analysis of Spur Gears Including Fillet Radii and Rim Thickness Effects
,”
ASME J. Mech., Transmissions, Autom. Des.
,
105
(
3
), pp.
327
330
.
12.
Oda
,
S.
,
Miyachika
,
K.
, and
Araki
,
K.
,
1984
, “
Effects of Rim Thickness on Root Stress and Bending Fatigue Strength of Internal Gear Tooth
,”
Bull. JSME
,
27
(
230
), pp.
1759
1763
.
13.
Oda
,
S.
, and
Miyachika
,
K.
,
1987
, “
Root Stress of Thin-Rimmed Internal Spur Gear Supported With Pins
,”
JSME Int. J.
,
30
(
262
), pp.
646
652
.
14.
Bibel
,
G. D.
,
Reddy
,
S. K.
,
Savage
,
M.
, and
Handschuh
,
R. F.
,
1994
, “
Effects of Rim Thickness on Spur Gear Bending Stress
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1157
1162
.
15.
Chen
,
Z.
, and
Shao
,
Y.
,
2013
, “
Mesh Stiffness of an Internal Spur Gear Pair With Ring Gear Rim Deformation
,”
Mech. Mach. Theory
,
69
, pp.
1
12
.
16.
Chen
,
Z.
,
Zhu
,
Z.
, and
Shao
,
Y.
,
2015
, “
Fault Feature Analysis of Planetary Gear System With Tooth Root Crack and Flexible Ring Gear Rim
,”
Eng. Fail. Anal.
,
49
, pp.
92
103
.
17.
Chen
,
Z.
, and
Su
,
D.
,
2015
, “
Dynamic Simulation of Planetary Gear Set With Flexible Spur Ring Gear
,”
J. Sound Vib.
,
332
(
26
), pp.
7191
7203
.
18.
Gasmi
,
A.
,
Joseph
,
P. F.
,
Rhyne
,
T. B.
, and
Cron
,
S. M.
,
2010
, “
Closed-Form Solution of a Shear Deformable, Extensional Ring in Contact Between Two Rigid Surfaces
,”
Int. J. Solids Struct.
,
48
(
5
), pp.
843
853
.
19.
Vijayakar
,
S.
,
1991
, “
A Combined Surface Integral and Finite Element Solution for a Three-Dimensional Contact Problem
,”
Int. J. Numer. Methods Eng.
,
31
(
3
), pp.
525
545
.
20.
Abousleiman
,
V.
, and
Velex
,
P.
,
2006
, “
A Hybrid 3D Finite Element Lumped Parameter Model for Quasi-Static and Dynamic Analyses of Planetary Epicyclic Gear Sets
,”
Mech. Mach. Theory
,
41
(
6
), pp.
725
748
.
21.
Abousleiman
,
V.
,
Velex
,
P.
, and
Becquerelle
,
S.
,
2007
, “
Modeling of Spur and Helical Gear Planetary Drives With Flexible Ring Gears and Planet Carriers
,”
ASME J. Mech. Des.
,
29
(
1
), pp.
95
106
.
22.
Chapron
,
M.
,
Velex
,
P.
,
Bruyere
,
J.
, and
Becquerelle
,
S.
,
2016
, “
Optimization of profile modifications With Regard to Dynamic Tooth Loads in Single and Double-Helical Planetary Gears With Flexible Ring-Gears
,”
ASME J. Mech. Des.
,
138
(
2
), p.
023301
.
23.
Wu
,
X.
, and
Parker
,
R. G.
,
2006
, “
Vibration of Rings on a General Elastic Foundations
,”
J. Sound Vib.
,
295
(
1–2
), pp.
194
213
.
24.
Bodas
,
A.
, and
Kahraman
,
A.
,
2004
, “
Influence of Carrier and Gear Manufacturing Errors on the Static Load Sharing Behavior of Planetary Gear Sets
,”
JSME Int. J., Ser. C
,
47
(
3
), pp.
908
915
.
25.
Bodas
,
A.
,
2001
, “
Influence of Manufacturing Errors and Assembly Variations on the Load Sharing Behavior of Planetary Gear Sets Under Quasi-Static Conditions
,” Master's thesis, University of Toledo, Toledo, OH.
26.
Singh
,
A.
,
2005
, “
Application of a System Level Model to Study the Planetary Load Sharing Behavior
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
469
476
.
27.
Bogner
,
F. K.
,
Fox
,
R. L.
, and
Schmit
,
L. A.
,
1967
, “
A Cylindrical Shell Discrete Element
,”
Am. Inst. Aeronaut. Astronaut. J.
,
5
(
4
), pp.
745
750
.
28.
Meck
,
H. R.
,
1980
, “
An Accurate Polynomial Displacement Function for Unite Ring Elements
,”
Comput. Struct.
,
11
(
4
), pp.
265
269
.
29.
Pandian
,
N.
,
Rao
,
T. A.
, and
Chandra
,
S.
,
1989
, “
Studies on Performance of Curved Beam Finite Elements for Analysis of Thin Arches
,”
Comput. Struct.
,
31
(
6
), pp.
997
1002
.
30.
Yamada
,
Y.
, and
Ezawa
,
Y.
,
1997
, “
On Curved Finite Elements for the Analysis of Circular Arches
,” Int. J.
Numer. Methods Eng.
,
11
(
11
), pp.
1635
1651
.
31.
Palaninathan
,
R.
, and
Chandrasekharan
,
P. S.
,
1985
, “
Curved Beam Element Stiffness Matrix Formulation
,”
Comput. Struct.
,
21
(
4
), pp.
663
669
.
32.
Friedman
,
Z.
, and
Kosmatka
,
J. B.
,
1998
, “
An Accurate Two-Node Finite Element for Shear Deformable Curved Beams
,”
Int. J. Numer. Methods Eng.
,
41
(
3
), pp.
473
498
.
33.
Ashwell
,
D. G.
,
Sabir
,
A. B.
, and
Roberts
,
T. M.
,
1971
, “
Further Studies in the Application of Curved Finite Elements to Circular Arches
,”
Int. J. Mech. Sci.
,
13
(
6
), pp.
507
517
.
34.
Ashwell
,
D. G.
, and
Sabir
,
A. B.
,
1971
, “
Limitations of Certain Curved Finite Elements When Applied to Arches
,”
Int. J. Mech. Sci.
,
13
(
2
), pp.
133
139
.
35.
Sabir
,
A. B.
, and
Ashwell
,
D. G.
,
1971
, “
A Comparison of Curved Beam Finite Elements When Used in Vibration Problems
,”
J. Sound Vib.
,
18
(
4
), pp.
555
563
.
36.
Sabir
,
A. B.
,
Djoudi
,
M. S.
, and
Sfendji
,
A.
,
1994
, “
The Effect of Shear Deformation on Vibration of Circular Arches by Finite Elements Method
,”
Thin-Walled Struct.
,
18
(
1
), pp.
47
63
.
37.
Zienkiewicz
,
O. C.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals–7th Edition
,
Butterworth-Heinemann
, Waltham, MA.
You do not currently have access to this content.