Model-based reliability analysis may not be practically useful if reliability estimation contains uncontrollable errors. This paper addresses potential reliability estimation errors from model bias together with model parameters. Given three representative scenarios, reliability analysis strategies with representative methods are proposed. The pros and cons of these strategies are discussed and demonstrated using a tank storage problem based on the finite element model with different fidelity levels. It is found in this paper that the confidence-based reliability analysis considering epistemic uncertainty modeling for both model bias and model parameters can make reliability estimation errors controllable with less conservativeness compared to the direct reliability modeling using the Bayesian approach.

References

References
1.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
2.
Youn
,
B. D.
,
Choi
,
K. K.
,
Yang
,
R.-J.
, and
Gu
,
L.
,
2004
, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscip. Optim.
,
26
(
3–4
), pp.
272
283
.
3.
Gu
,
L.
,
Yang
,
R. J.
,
Tho
,
C. H.
,
Makowski
,
M.
,
Faruque
,
O.
, and
Li
,
Y.
,
2001
, “
Optimization and Robustness for Crashworthiness of Side Impact
,”
Int. J. Veh. Des.
,
26
(
4
), pp.
348
360
.
4.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.
5.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
33
, pp.
47
57
.
6.
Wang
,
Z.
, and
Wang
,
P.
,
2015
, “
A Double-Loop Adaptive Sampling Approach for Sensitivity-Free Dynamic Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
142
, pp.
346
356
.
7.
Zhang
,
J.
, and
Ellingwood
,
B.
,
1994
, “
Orthogonal Series Expansions of Random Fields in Reliability Analysis
,”
J. Eng. Mech.
,
120
(
12
), pp.
2660
2677
.
8.
Hu
,
C.
, and
Youn
,
B. D.
,
2011
, “
Adaptive-Sparse Polynomial Chaos Expansion for Reliability Analysis and Design of Complex Engineering Systems
,”
Struct. Multidiscip. Optim.
,
43
(
3
), pp.
419
442
.
9.
Hawchar
,
L.
,
El Soueidy
,
C.-P.
, and
Schoefs
,
F.
,
2017
, “
Principal Component Analysis and Polynomial Chaos Expansion for Time-Variant Reliability Problems
,”
Reliab. Eng. Syst. Saf.
,
167
, pp.
406
416
.
10.
Der Kiureghian
,
A.
, and
Dakessian
,
T.
,
1998
, “
Multiple Design Points in First and Second-Order Reliability
,”
Struct. Saf.
,
20
(
1
), pp.
37
49
.
11.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
,
2004
, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
562
570
.
12.
Hohenbichler
,
M.
,
Gollwitzer
,
S.
,
Kruse
,
W.
, and
Rackwitz
,
R.
,
1987
, “
New Light on First- and Second-Order Reliability Methods
,”
Struct. Saf.
,
4
(
4
), pp.
267
284
.
13.
Zhao
,
Y.-G.
, and
Ono
,
T.
,
1999
, “
A General Procedure for First/Second-Order Reliability Method (FORM/SORM)
,”
Struct. Saf.
,
21
(
2
), pp.
95
112
.
14.
Der Kiureghian
,
A.
,
2000
, “
Geometry of Random Vibrations and Solutions by FORM and SORM
,”
Probab. Eng. Mech.
,
15
(
1
), pp.
81
90
.
15.
Zhang
,
J.
, and
Du
,
X.
,
2010
, “
A Second-Order Reliability Method With First-Order Efficiency
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101006
.
16.
Bucher
,
C. G.
, and
Bourgund
,
U.
,
1990
, “
A Fast and Efficient Response Surface Approach for Structural Reliability Problems
,”
Struct. Saf.
,
7
(
1
), pp.
57
66
.
17.
Kaymaz
,
I.
,
2005
, “
Application of Kriging Method to Structural Reliability Problems
,”
Struct. Saf.
,
27
(
2
), pp.
133
151
.
18.
Kim
,
C.
, and
Choi
,
K. K.
,
2008
, “
Reliability-Based Design Optimization Using Response Surface Method With Prediction Interval Estimation
,”
ASME J. Mech. Des.
,
130
(
12
), p.
1214011
.
19.
Xu
,
H.
, and
Rahman
,
S.
,
2004
, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
,
61
(
12
), pp.
1992
2019
.
20.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
,
2008
, “
Eigenvector Dimension Reduction (EDR) Method for Sensitivity-Free Probability Analysis
,”
Struct. Multidiscip. Optim.
,
37
(
1
), pp.
13
28
.
21.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Dimension Reduction Method for Reliability-Based Robust Design Optimization
,”
Comput. Struct.
,
86
(
13–14
), pp.
1550
1562
.
22.
Bae
,
S.
,
Kim
,
N. H.
, and
Jang
,
S. G.
,
2018
, “
Reliability-Based Design Optimization Under Sampling Uncertainty: Shifting Design Versus Shaping Uncertainty
,”
Struct. Multidiscip. Optim.
,
57
(
5
), pp.
1845
1855
.
23.
Nannapaneni
,
S.
, and
Mahadevan
,
S.
,
2016
, “
Reliability Analysis Under Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
155
, pp.
9
20
.
24.
Aguirre Martinez
,
F.
,
Sallak
,
M.
, and
Schon
,
W.
,
2015
, “
An Efficient Method for Reliability Analysis of Systems Under Epistemic Uncertainty Using Belief Function Theory
,”
IEEE Trans. Reliab.
,
64
(
3
), pp.
893
909
.
25.
Muscolino
,
G.
,
Santoro
,
R.
, and
Sofi
,
A.
,
2016
, “
Reliability Analysis of Structures With Interval Uncertainties Under Stationary Stochastic Excitations
,”
Comput. Methods Appl. Mech. Eng.
,
300
, pp.
47
69
.
26.
Peng
,
X.
,
Wu
,
T.
,
Li
,
J.
,
Jiang
,
S.
,
Qiu
,
C.
, and
Yi
,
B.
,
2018
, “
Hybrid Reliability Analysis With Uncertain Statistical Variables, Sparse Variables and Interval Variables
,”
Eng. Optim.
,
50
(
8
), pp.
1347
1363
.
27.
Wang
,
P.
,
Youn
,
B. D.
,
Xi
,
Z.
, and
Kloess
,
A.
,
2009
, “
Bayesian Reliability Analysis With Evolving, Insufficient, and Subjective Data Sets
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111008
.
28.
Hu
,
Z.
,
Mahadevan
,
S.
, and
Du
,
X.
,
2016
, “
Uncertainty Quantification of Time-Dependent Reliability Analysis in the Presence of Parametric Uncertainty
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
2
(
3
), p.
031005
.
29.
Xue
,
G.
,
Dai
,
H.
,
Zhang
,
H.
, and
Wang
,
W.
,
2017
, “
A New Unbiased Metamodel Method for Efficient Reliability Analysis
,”
Struct. Saf.
,
67
, pp.
1
10
.
30.
Nannapaneni
,
S.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Uncertainty Quantification in Reliability Estimation With Limit State Surrogates
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1509
1526
.
31.
Jiang
,
Z.
,
Chen
,
W.
,
Fu
,
Y.
, and
Yang
,
R.-J.
,
2013
, “
Reliability-Based Design Optimization With Model Bias and Data Uncertainty
,”
SAE Int. J. Mater. Manuf.
,
6
(
3
), pp. 502–516.
32.
Pan
,
H.
,
Xi
,
Z.
, and
Yang
,
R.-J.
,
2016
, “
Model Uncertainty Approximation Using a Copula-Based Approach for Reliability Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1543
1556
.
33.
Shi
,
L.
, and
Lin
,
S.-P.
,
2016
, “
A New RBDO Method Using Adaptive Response Surface and First-Order Score Function for Crashworthiness Design
,”
Reliab. Eng. Syst. Saf.
,
156
, pp.
125
133
.
34.
Moon
,
M.-Y.
,
Choi
,
K. K.
,
Cho
,
H.
,
Gaul
,
N.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2017
, “
Reliability-Based Design Optimization Using Confidence-Based Model Validation for Insufficient Experimental Data
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031404
.
35.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Statist. Soc., Ser. B
,
63
, pp.
425
464
.
36.
Collobert
,
R.
, and
Bengio
,
S.
,
2001
, “
SVMTorch: Support Vector Machines for Large-Scale Regression Problems
,”
J. Mach. Learn. Res.
,
1
(
2
), pp.
143
160
.http://www.jmlr.org/papers/volume1/collobert01a/html/
37.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
,
2005
, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1068
1076
.
38.
Ching
,
J.
, and
Hsieh
,
Y.-H.
,
2007
, “
Local Estimation of Failure Probability Function and Its Confidence Interval With Maximum Entropy Principle
,”
Probab. Eng. Mech.
,
22
(
1
), pp.
39
49
.
39.
Nagahara
,
Y.
,
2004
, “
A Method of Simulating Multivariate Nonnormal Distributions by the Pearson Distribution System and Estimation
,”
Comput. Stat. Data Anal.
,
47
(
1
), pp.
1
29
.
40.
Slifker
,
J. F.
, and
Shapiro
,
S. S.
,
1980
, “
The Johnson System: Selection and Parameter Estimation
,”
Technometrics
,
22
(
2
), pp.
239
246
.
41.
Butler
,
R. W.
,
2007
,
Saddlepoint Approximations With Applications
, Cambridge University Press, Cambridge, UK pp.
1
564
.
42.
Jaynes
,
E. T.
,
1982
, “
On the Rationale of Maximum-Entropy Methods
,”
Proc. IEEE
,
70
(
9
), pp.
939
952
.
43.
Anderson
,
N. H.
,
Hall
,
P.
, and
Titterington
,
D. M.
,
1994
, “
Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates
,”
J. Multivariate Anal.
,
50
(
1
), pp.
41
54
.
44.
Xi
,
Z.
,
Hu
,
C.
, and
Youn
,
B. D.
,
2012
, “
A Comparative Study of Probability Estimation Methods for Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
45
(
1
), pp.
33
52
.
45.
Zhang
,
X.
, and
Pandey
,
M. D.
,
2013
, “
Structural Reliability Analysis Based on the Concepts of Entropy, Fractional Moment and Dimensional Reduction Method
,”
Struct. Saf.
,
43
, pp.
28
40
.
46.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
, Cambridge, MA.
47.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.
48.
Schroeder
,
B. B.
,
Hu
,
K. T.
,
Mullins
,
J. G.
, and
Winokur
,
J. G.
,
2016
, “
Summary of the 2014 Sandia Verification and Validation Challenge Workshop
,”
ASME. J. Verif. Valid. Uncertainty Quantif.
,
1
(
1
), p.
015501
.
49.
Li
,
W.
,
Chen
,
S.
,
Jiang
,
Z.
,
Apley
,
D. W.
,
Lu
,
Z.
, and
Chen
,
W.
,
2016
, “
Integrating Bayesian Calibration, Bias Correction, and Machine Learning for the 2014 Sandia Verification and Validation Challenge Problem
,”
ASME J. Verif., Valid. Uncertainty Quantif.
,
1
(
1
), p. 011004.
50.
Xi
,
Z.
, and
Yang
,
R.-J.
,
2016
, “
Reliability Analysis With Model Uncertainty Coupling With Parameter and Experimental Uncertainties: A Case Study of 2014 Verification and Validation Challenge Problem
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
1
), p. 011005.
51.
Choudhary
,
A.
,
Voyles
,
I. T.
,
Roy
,
C. J.
,
Oberkampf
,
W. L.
, and
Patil
,
M.
,
2016
, “
Probability Bounds Analysis Applied to the Sandia Verification and Validation Challenge Problem
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
1
), p. 011003.
52.
Mullins
,
J.
, and
Mahadevan
,
S.
,
2016
, “
Bayesian Uncertainty Integration for Model Calibration, Validation, and Prediction
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
1
), p. 011006.
53.
Beghini
,
L. L.
, and
Hough
,
P. D.
,
2016
, “
Sandia Verification and Validation Challenge Problem: A PCMM-Based Approach to Assessing Prediction Credibility
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
1
), p. 011002.
You do not currently have access to this content.