To account for the model bias in reliability analysis, various methods have been developed to validate simulation models using precise experimental data. However, it still lacks a strategy to actively seek critical information from both sources for effective uncertainty reduction. This paper presents an active resource allocation approach (ARA) to improve the accuracy of reliability approximations while reducing the computational, and more importantly, experimental costs. In ARA, the Gaussian process (GP) modeling technique is employed to fuse both simulation and experimental data for capturing the model bias, and further predicting actual system responses. To manage the uncertainty due to the lack of data, a two-phase updating strategy is developed to improve the fidelity of GP models by actively collecting the most valuable simulation and experimental data. With the high-fidelity predictive models, sampling-based methods such as Monte Carlo simulation are used to calculate the reliability accurately while the overall costs of conducting simulations and experiments can be significantly reduced. The effectiveness of the proposed approach is demonstrated through four case studies.

References

References
1.
Chojaczyk
,
A.
,
Teixeira
,
A.
,
Neves
,
L. C.
,
Cardoso
,
J.
, and
Soares
,
C. G.
,
2015
, “
Review and Application of Artificial Neural Networks Models in Reliability Analysis of Steel Structures
,”
Struct. Saf.
,
52
, pp.
78
89
.
2.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Global Sensitivity Analysis-Enhanced Surrogate (GSAS) Modeling for Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
53
(
3
), pp.
501
521
.
3.
Kang
,
F.
,
Xu
,
Q.
, and
Li
,
J.
,
2016
, “
Slope Reliability Analysis Using Surrogate Models Via New Support Vector Machines With Swarm Intelligence
,”
Appl. Math. Modell.
,
40
(
11–12
), pp.
6105
6120
.
4.
Wang
,
S.
,
Chen
,
W.
, and
Tsui
,
K.-L.
,
2009
, “
Bayesian Validation of Computer Models
,”
Technometrics
,
51
(
4
), pp.
439
451
.
5.
Zhou
,
Z.-B.
,
Dong
,
D.-D.
, and
Zhou
,
J.-L.
,
2006
, “
Application of Bayesian Networks in Reliability Analysis
,”
Syst. Eng.-Theory Pract.
,
6
, pp.
95
100
.
6.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
.
7.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.
8.
Wang
,
Z.
, and
Chen
,
W.
,
2016
, “
Time-Variant Reliability Assessment Through Equivalent Stochastic Process Transformation
,”
Reliab. Eng. Syst. Saf.
,
152
, pp.
166
175
.
9.
Schöbi
,
R.
,
Sudret
,
B.
, and
Marelli
,
S.
,
2016
, “
Rare Event Estimation Using Polynomial-Chaos Kriging
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
3
(
2
), p.
D4016002
.
10.
Bourinet
,
J.-M.
,
2016
, “
Rare-Event Probability Estimation With Adaptive Support Vector Regression Surrogates
,”
Reliab. Eng. Syst. Saf.
,
150
, pp.
210
221
.
11.
Balesdent
,
M.
,
Morio
,
J.
, and
Brevault
,
L.
,
2016
, “
Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters
,”
Methodol. Comput. Appl. Probab.
,
18
(
1
), pp.
197
216
.
12.
Keshtegar
,
B.
, and
Meng
,
Z.
,
2017
, “
A Hybrid Relaxed First-Order Reliability Method for Efficient Structural Reliability Analysis
,”
Struct. Saf.
,
66
, pp.
84
93
.
13.
Wang
,
G.
, and
Ma
,
Z.
,
2017
, “
Hybrid Particle Swarm Optimization for First-Order Reliability Method
,”
Comput. Geotech.
,
81
, pp.
49
58
.
14.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2014
, “
Second-Order Reliability Method-Based Inverse Reliability Analysis Using Hessian Update for Accurate and Efficient Reliability-Based Design Optimization
,”
Int. J. Numer. Methods Eng.
,
100
(
10
), pp.
773
792
.
15.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2016
, “
Post Optimization for Accurate and Efficient Reliability-Based Design Optimization Using Second-Order Reliability Method Based on Importance Sampling and Its Stochastic Sensitivity Analysis
,”
Int. J. Numer. Methods Eng.
,
107
(
2
), pp.
93
108
.
16.
Piric
,
K.
,
2015
, “
Reliability Analysis Method Based on Determination of the Performance Function's PDF Using the Univariate Dimension Reduction Method
,”
Struct. Saf.
,
57
, pp.
18
25
.
17.
Acar
,
E.
,
Rais-Rohani
,
M.
, and
Eamon
,
C. D.
,
2010
, “
Reliability Estimation Using Univariate Dimension Reduction and Extended Generalised Lambda Distribution
,”
Int. J. Reliab. Saf.
,
4
(
2/3
), pp.
166
187
.
18.
Liang
,
H.
,
Cheng
,
L.
, and
Liu
,
S.
,
2011
, “
Monte Carlo Simulation Based Reliability Evaluation of Distribution System Containing Microgrids
,”
Power Syst. Technol.
,
10
, pp.
76
81
.
19.
Miao
,
F.
, and
Ghosn
,
M.
,
2011
, “
Modified Subset Simulation Method for Reliability Analysis of Structural Systems
,”
Struct. Saf.
,
33
(
4–5
), pp.
251
260
.
20.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.
21.
Kaymaz
,
I.
, and
McMahon
,
C. A.
,
2005
, “
A Response Surface Method Based on Weighted Regression for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
20
(
1
), pp.
11
17
.
22.
Wong
,
S.
,
Hobbs
,
R.
, and
Onof
,
C.
,
2005
, “
An Adaptive Response Surface Method for Reliability Analysis of Structures With Multiple Loading Sequences
,”
Struct. Safety
,
27
(
4
), pp.
287
308
.
23.
Pai
,
P.-F.
,
2006
, “
System Reliability Forecasting by Support Vector Machines With Genetic Algorithms
,”
Math. Comput. Modell.
,
43
(
3–4
), pp.
262
274
.
24.
Zhao
,
H.
,
Ru
,
Z.
,
Chang
,
X.
,
Yin
,
S.
, and
Li
,
S.
,
2014
, “
Reliability Analysis of Tunnel Using Least Square Support Vector Machine
,”
Tunnelling Underground Space Technol.
,
41
, pp.
14
23
.
25.
Bourinet
,
J.-M.
,
Deheeger
,
F.
, and
Lemaire
,
M.
,
2011
, “
Assessing Small Failure Probabilities by Combined Subset Simulation and Support Vector Machines
,”
Struct. Saf.
,
33
(
6
), pp.
343
353
.
26.
Chen
,
Z.
,
Qiu
,
H.
,
Gao
,
L.
,
Li
,
X.
, and
Li
,
P.
,
2014
, “
A Local Adaptive Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. Optim.
,
49
(
3
), pp.
401
416
.
27.
Lee
,
T. H.
, and
Jung
,
J. J.
,
2008
, “
A Sampling Technique Enhancing Accuracy and Efficiency of Metamodel-Based RBDO: Constraint Boundary Sampling
,”
Comput. Struct.
,
86
(
13
), pp.
1463
1476
.
28.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.
29.
Gomes
,
W. J. D. S.
, and
Beck
,
A. T.
,
2013
, “
Global Structural Optimization Considering Expected Consequences of Failure and Using ANN Surrogates
,”
Comput. Struct.
,
126
(
Suppl. C
), pp.
56
68
.
30.
Schueremans
,
L.
, and
Van Gemert
,
D.
,
2005
, “
Benefit of Splines and Neural Networks in Simulation Based Structural Reliability Analysis
,”
Struct. Saf.
,
27
(
3
), pp.
246
261
.
31.
Basudhar
,
A.
, and
Missoum
,
S.
,
2008
, “
Adaptive Explicit Decision Functions for Probabilistic Design and Optimization Using Support Vector Machines
,”
Comput. Struct.
,
86
(
19
), pp.
1904
1917
.
32.
Goswami
,
S.
,
Ghosh
,
S.
, and
Chakraborty
,
S.
,
2016
, “
Reliability Analysis of Structures by Iterative Improved Response Surface Method
,”
Struct. Saf.
,
60
, pp.
56
66
.
33.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
33
, pp.
47
57
.
34.
Zhao
,
L.
,
Choi
,
K. K.
,
Lee
,
I.
, and
Du
,
L.
, “
Response Surface Method Using Sequential Sampling for Reliability-Based Design Optimization
,”
ASME
Paper No. DETC2009-87084.
35.
Balesdent
,
M.
,
Morio
,
J.
, and
Marzat
,
J.
,
2013
, “
Kriging-Based Adaptive Importance Sampling Algorithms for Rare Event Estimation
,”
Struct. Saf.
,
44
, pp.
1
10
.
36.
Hasselman
,
T.
,
Yap
,
K.
,
Lin
,
C.-H.
, and
Cafeo
,
J.
, “
A Case Study in Model Improvement for Vehicle Crashworthiness Simulation
,”
23rd International Modal Analysis Conference
, Orlando, FL, Jan. 31–Feb. 3.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.549&rep=rep1&type=pdf
37.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.
38.
Xi
,
Z.
,
Fu
,
Y.
, and
Yang
,
R.
,
2013
, “
Model Bias Characterization in the Design Space Under Uncertainty
,”
Int. J. Performability Eng.
,
9
(
4
), pp.
433
444
.https://www.researchgate.net/profile/Zhimin_Xi/publication/257992981_Model_bias_characterization_in_the_design_space_under_uncertainty/links/0c960526906aa27733000000.pdf
39.
Qian
,
P. Z.
, and
Wu
,
C. J.
,
2008
, “
Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments
,”
Technometrics
,
50
(
2
), pp.
192
204
.
40.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B
,
63
(
3
), pp.
425
464
.
41.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.
42.
Xia
,
B.
,
,
H.
,
Yu
,
D.
, and
Jiang
,
C.
,
2015
, “
Reliability-Based Design Optimization of Structural Systems Under Hybrid Probabilistic and Interval Model
,”
Comput. Struct.
,
160
, pp.
126
134
.
You do not currently have access to this content.