Reliability-based design optimization (RBDO) aims at optimizing the design of an engineered system to minimize the design cost while satisfying reliability requirements. However, it is challenging to perform RBDO under high-dimensional uncertainty due to the often prohibitive computational burden. In this paper, we address this challenge by leveraging a recently developed method for reliability analysis under high-dimensional uncertainty. The method is termed high-dimensional reliability analysis (HDRA). The HDRA method optimally combines the strengths of univariate dimension reduction (UDR) and kriging-based reliability analysis to achieve satisfactory accuracy with an affordable computational cost for HDRA problems. In this paper, we improve the computational efficiency of high-dimensional RBDO by pursuing two new strategies: (i) a two-stage surrogate modeling strategy is adopted to first locate a highly probable region of the optimum design and then locally refine the accuracy of the surrogates in this region; and (ii) newly selected samples are updated for all the constraints during the sequential sampling process in HDRA. The results of two mathematical examples and one real-world engineering example suggest that the proposed HDRA-based RBDO (RBDO-HDRA) method is capable of solving high-dimensional RBDO problems with higher accuracy and comparable efficiency than the UDR-based RBDO (RBDO-UDR) and ordinary kriging-based RBDO (RBDO-kriging) methods.

References

References
1.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
1999
, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
557
564
.
2.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2003
, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
.
3.
Choi
,
K. K.
,
Youn
,
B. D.
, and
Du
,
L.
,
2004
, “
Enriched Performance Measure Approach (pma+) and Its Numerical Method for Reliability-Based Design Optimization
,”
AIAA
Paper No. AIAA-2004-4401.
4.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
,
2005
, “
First-Order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
851
857
.
5.
Noh
,
Y.
,
Choi
,
K. K.
, and
Du
,
L.
,
2009
, “
Reliability-Based Design Optimization of Problems With Correlated Input Variables Using a Gaussian Copula
,”
Struct. Multidiscip. Optim.
,
38
(
1
), pp.
1
16
.
6.
Du
,
X. P.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
7.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
,
2007
, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1215
1224
.
8.
Nguyen
,
T. H.
,
Song
,
J.
, and
Paulino
,
G. H.
,
2010
, “
Single-Loop System Reliability-Based Design Optimization Using Matrix-Based System Reliability Method: Theory and Applications
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011005
.
9.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.
10.
Lin
,
P. T.
, and
Lin
,
S. P.
,
2016
, “
An Effective Approach to Solve Design Optimization Problems With Arbitrarily Distributed Uncertainties in the Original Design Space Using Ensemble of Gaussian Reliability Analyses
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071403
.
11.
Sadoughi
,
M.
,
Li
,
M.
,
Hu
,
C.
,
MacKenzie
,
C.
,
Lee
,
S.
, and
Eshghi
,
A. T.
,
2018
, “
A High-Dimensional Reliability Analysis Method for Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071401
.
12.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
13.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
,
2008
, “
Eigenvector Dimension Reduction (EDR) Method for Sensitivity-Free Probability Analysis
,”
Struct. Multidiscip. Optim.
,
37
(
1
), pp. 13–28.
14.
Rahman
,
S.
, and
Wei
,
D.
,
2008
, “
Design Sensitivity and Reliability-Based Structural Optimization by Univariate Decomposition
,”
Struct. Multidiscip. Optim.
,
35
(
3
), pp.
245
261
.
15.
Youn
,
B. D.
, and
Wang
,
P.
,
2008
, “
Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method
,”
Struct. Multidiscip. Optim.
,
36
(
2
), pp.
107
123
.
16.
Seong
,
S.
,
Hu
,
C.
, and
Lee
,
S.
,
2017
, “
Design Under Uncertainty for Reliable Power Generation of Piezoelectric Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
28
(
17
), pp.
2437
2449
.
17.
Xu
,
H.
, and
Rahman
,
S.
,
2004
, “
A Generalized Dimension‐Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
,
61
(
12
), pp.
1992
2019
.
18.
Xu
,
H.
, and
Rahman
,
S.
,
2005
, “
Decomposition Methods for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
20
(
3
), pp.
239
250
.
19.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.
20.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
21.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.
22.
Sadoughi
,
M. K.
,
Hu
,
C.
,
MacKenzie
,
C. A.
,
Eshghi
,
A. T.
, and
Lee
,
S.
,
2017
, “
Sequential Exploration-Exploitation With Dynamic Trade-Off for Efficient Reliability Analysis of Complex Engineered Systems
,”
Struct. Multidiscip. Optim.
,
56
, pp.
1
16
.
23.
Chen
,
Z.
,
Qiu
,
H.
,
Gao
,
L.
,
Li
,
X.
, and
Li
,
P.
,
2014
, “
A Local Adaptive Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. Optim.
,
49
(
3
), pp.
401
416
.
24.
Li
,
X.
,
Qiu
,
H.
,
Chen
,
Z.
,
Gao
,
L.
, and
Shao
,
X.
,
2016
, “
A Local Kriging Approximation Method Using MPP for Reliability-Based Design Optimization
,”
Comput. Struct.
,
162
, pp.
102
115
.
25.
Wang
,
Z.
,
Hutter
,
F.
,
Zoghi
,
M.
,
Matheson
,
D.
, and
de Feitas
,
N.
,
2016
, “
Bayesian Optimization in a Billion Dimensions Via Random Embeddings
,”
J. Artif. Intell. Res.
,
55
, pp.
361
387
.
26.
Li
,
M.
,
Sadoughi
,
M.
,
Hu
,
Z.
, and
Hu
,
C.
,
2018
, “
Reliability-Based Design Optimization of High-Dimensional Engineered Systems Involving Computationally Expensive Simulations
,”
AIAA
Paper No. AIAA 2018-2171.
27.
Rasmussen
,
C. E.
,
2004
, “
Gaussian Processes in Machine Learning
,”
Advanced Lectures on Machine Learning
,
Springer
,
Berlin
, pp.
63
71
.
28.
Cho
,
H.
,
Choi
,
K. K.
, and
Lamb
,
D.
,
2017
, “
Sensitivity Developments for RBDO With Dependent Input Variable and Varying Input Standard Deviation
,”
ASME J. Mech. Des.
,
139
(
7
), p.
071402
.
29.
Rubinstein
,
R. Y.
, and
Shapiro
,
A.
,
1993
,
Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method
,
Wiley
, Hoboken, NJ.
30.
Lee
,
I.
,
Choi
,
K. K.
, and
Zhao
,
L.
,
2011
, “
Sampling-Based RBDO Using the Stochastic Sensitivity Analysis and Dynamic Kriging Method
,”
Struct. Multidiscip. Optim.
,
44
(
3
), pp.
299
317
.
31.
Paulson
,
E. J.
, and
Starkey
,
R. P.
,
2014
, “
Development of a Multistage Reliability-Based Design Optimization Method
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011007
.
32.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Sequential Quadratic Programming
,
Springer
,
New York
, pp.
529
562
.
33.
Shan
,
S.
, and
Wang
,
G. G.
,
2008
, “
Reliable Design Space and Complete Single-Loop Reliability-Based Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
93
(
8
), pp.
1218
1230
.
34.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
,
2008
, “
A Single-Loop Method for Reliability-Based Design Optimisation
,”
Int. J. Prod. Dev.
,
5
(
1/2
), pp.
76
92
.
35.
Dubourg
,
V.
,
Sudret
,
B.
, and
Bourinet
,
J. M.
,
2011
, “
Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
673
690
.
36.
Eshghi
,
A. T.
,
Lee
,
S.
,
Sadoughi
,
M. K.
,
Hu
,
C.
,
Kim
,
Y. C.
, and
Seo
,
J. H.
,
2017
, “
Design Optimization Under Uncertainty and Speed Variability for a Piezoelectric Energy Harvester Powering a Tire Pressure Monitoring Sensor
,”
Smart Mater. Struct.
,
26
(
10
), p.
105037
.
37.
Landau
,
D. P.
, and
Binder
,
K.
,
2014
,
A Guide to Monte Carlo Simulations in Statistical Physics
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.