In this article, we focus on a generative design algorithm for area-to-point (AP) conduction problems in a Lagrangian framework. A physically meaningful continuous area to point path solution is generated through an adaptive growth procedure, which starts from the source point and extends spreading the whole conduction domain. This is achieved by using a set of special moving morphable components (MMCs) whose contour and skeleton are described explicitly by parameterized level-set surfaces. Unlike in the conventional methods where topology optimization was carried out in an Eulerian framework, the proposed optimizer is Lagrangian in nature, which is consistent with classical shape optimization approaches, giving great potential to reduce the total number of design variables significantly and also yielding more flexible modeling capability to control the structural feature sizes. By doing this, the growth elements are separated from the underlying finite element method (FEM) grids so that they can grow toward an arbitrary direction to form an optimized area-to-point path solution. The method is tested on an electromagnetic bandgap (EBG) power plane design example; both simulation and experiment verified the effectiveness of the proposed method.

References

References
1.
Abhari
,
R.
, and
Eleftheriades
,
G. V.
,
2003
, “
Metallo-Dielectric Electromagnetic Bandgap Structures for Suppression and Isolation of the Parallel-Plate Noise in High-Speed Circuits
,”
IEEE Trans. Microwave Theory Tech.
,
51
(
6
), pp.
1629
1639
.
2.
Kamgaing
,
T.
, and
Ramahi
,
O. M.
,
2005
, “
Design and Modeling of High-Impedance Electromagnetic Surfaces for Switching Noise Suppression in Power Planes
,”
IEEE Trans. Electromagn. Compat.
,
47
(
3
), pp.
479
489
.
3.
Kwon
,
J. H.
,
Dong
,
U. S.
, and
Sang
,
I. K.
,
2015
, “
Study on Triangular EBG Unit Cell Structures for Suppression of SSN in Power/Ground Planes
,”
IEEE International Symposium on Electromagnetic Compatibility
(
EMC
), Dresden, Germany, Aug. 16–22, pp.
1290
1293
.
4.
de Paulis
,
F.
,
Raimondo
,
L.
, and
Orlandi
,
A.
,
2010
, “
IR-DROP Analysis and Thermal Assessment of Planar Electromagnetic Bandgap Structures for Power Integrity Applications
,”
IEEE Trans. Adv. Packag.
,
33
(
3
), pp.
617
622
.
5.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
811
.
6.
Azoumah
,
Y.
,
Mazet
,
N.
, and
Neveu
,
P.
,
2004
, “
Constructal Network for Heat and Mass Transfer in a Solid–Gas Reactive Porous Medium
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
2961
2970
.
7.
Reis
,
A. H.
,
Miguel
,
A. F.
, and
Aydin
,
M.
,
2004
, “
Constructal Theory of Flow Architecture of the Lungs
,”
Med. Phys.
,
31
(
5
), pp.
1135
1140
.
8.
Cho
,
K. H.
,
Lee
,
J.
,
Kim
,
M. H.
, and
Bejan
,
A.
,
2010
, “
Vascular Design of Constructal Structures With Low Flow Resistance and Nonuniformity
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2309
2318
.
9.
Wechsatol
,
W.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Optimal Tree-Shaped Networks for Fluid Flow in a Disc-Shaped Body
,”
Int. J. Heat Mass Transfer
,
45
(
25
), pp.
4911
4924
.
10.
Miguel
,
A. F.
,
2010
, “
Dendritic Structures for Fluid Flow: Laminar, Turbulent and Constructal Design
,”
J. Fluids Struct.
,
26
(
2
), pp.
330
335
.
11.
Arion
,
V.
,
Cojocari
,
A.
, and
Bejan
,
A.
,
2003
, “
Constructal Tree Shaped Networks for the Distribution of Electrical Power
,”
Energy Convers. Manage.
,
44
(
6
), pp.
867
891
.
12.
Huang
,
H. F.
,
Liu
,
S. Y.
, and
Guo
,
W.
,
2012
, “
A Hierarchical Tree Shaped Power Distribution Network Based on Constructal Theory for EBG Structure Power Plane
,”
Prog. Electromagn. Res.
,
36
, pp.
173
191
.
13.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
14.
Yildiz
,
A. R.
, and
Saitou
,
K.
,
2011
, “
Topology Synthesis of Multicomponent Structural Assemblies in Continuum Domains
,”
ASME J. Mech. Des.
,
133
(
1
), p.
011008
.
15.
Lin
,
S.
,
Zhao
,
L.
,
Guest
,
J. K.
,
Weihs
,
T. P.
, and
Liu
,
Z.
,
2015
, “
Topology Optimization of Fixed-Geometry Fluid Diodes
,”
ASME J. Mech. Des.
,
137
(
8
), p.
081402
.
16.
Zhou
,
H.
,
2010
, “
Topology Optimization of Compliant Mechanisms Using Hybrid Discretization Model
,”
ASME J. Mech. Des.
,
132
(
11
), p.
111003
.
17.
Tovar
,
A.
,
Patel
,
N. M.
,
Niebur
,
G. L.
,
Sen
,
M.
, and
Renaud
,
J. E.
,
2006
, “
Topology Optimization Using a Hybrid Cellular Automaton Method With Local Control Rules
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1205
1216
.
18.
Zhang
,
Y. C.
, and
Liu
,
S. T.
,
2008
, “
Design of Conducting Paths Based on Topology Optimization
,”
Heat Mass Transfer
,
44
(
10
), pp.
1217
1227
.
19.
Yan
,
S. N.
,
Wang
,
F. W.
, and
Sigmund
,
O.
,
2018
, “
On the Non-Optimality of Tree Structures for Heat Conduction
,”
Int. J. Heat Mass Transfer
,
122
, pp.
660
680
.
20.
Boichot
,
R.
,
Luo
,
L.
, and
Fan
,
Y.
,
2009
, “
Tree-Network Structure Generation for Heat Conduction by Cellular Automaton
,”
Energy Convers. Manage.
,
50
(
2
), pp.
376
386
.
21.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.
22.
Bruns
,
T. E.
,
2007
, “
Topology Optimization of Convection-Dominated, Steady-State Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
50
(
15
), pp.
2859
2873
.
23.
Dirker
,
J.
, and
Meyer
,
J. P.
,
2013
, “
Topology Optimization for an Internal Heat-Conduction Cooling Scheme in a Square Domain for High Heat Flux Applications
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111010
.
24.
Marck
,
G.
,
Nemer
,
M.
,
Harion
,
J. L.
,
Russeil
,
S.
, and
Bougeard
,
D.
,
2012
, “
Topology Optimization Using the SIMP Method for Multiobjective Conductive Problems
,”
Numer. Heat Transfer, Part B
,
61
(
6
), pp.
439
470
.
25.
Mathieu-Potvin
,
F.
, and
Gosselin
,
L.
,
2007
, “
Optimal Conduction Pathways for Cooling a Heat-Generating Body: A Comparison Exercise
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2996
3006
.
26.
Steven
,
G. P.
,
Li
,
Q.
, and
Xie
,
Y. M.
,
2000
, “
Evolutionary Topology and Shape Design for General Physical Field Problems
,”
Comput. Mech.
,
26
(
2
), pp.
129
139
.
27.
Farzan
,
S. M. D.
, and
Sankar
,
A.
,
2008
, “
A New Miniaturized Planar Electromagnetic Bandgap (EBG) Structure With Dual Slits
,”
IEEE
Workshop on Signal Propagation on Interconnects
, Avignon, France, May 12–15, pp.
1
4
.
28.
Maute
,
K.
,
Tkachuk
,
A.
,
Wu
,
J.
,
Qi
,
J.
,
Ding
,
Z.
, and
Dunn
,
M.
,
2015
, “
Level Set Topology Optimization of Printed Active Composites
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111402
.
29.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
30.
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2011
, “
A Level Set-Based Topology Optimization Method for Maximizing Thermal Diffusivity in Problems Including Design-Dependent Effects
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031011
.
31.
Chen
,
S.
, and
Chen
,
W.
,
2011
, “
A New Level-Set Based Approach to Shape and Topology Optimization Under Geometric Uncertainty
,”
Struct. Multidiscip. Optim.
,
44
(
1
), pp.
1
18
.
32.
Guo
,
X.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically: A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
33.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
.
34.
Zhang
,
W. S.
,
Liu
,
Y.
,
Du
,
Z. L.
,
Zhu
,
Y. C.
, and
Guo
,
X.
,
2018
, “
A Moving Morphable Component Based Topology Optimization Approach for Rib-Stiffened Structures Considering Buckling Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111404
.
35.
Zhu
,
B. L.
,
Chen
,
Q.
,
Wang
,
R. X.
, and
Zhang
,
X. M.
,
2018
, “
Structural Topology Optimization Using a Moving Morphable Component-Based Method Considering Geometrical Nonlinearity
,”
ASME J. Mech. Des.
,
140
(
8
), p.
081403
.
36.
Guo
,
X.
,
Zhang
,
W. S.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
.
37.
Zhang
,
W. S.
,
Li
,
D.
,
Zhou
,
J. H.
,
Du
,
Z. L.
,
Li
,
B. J.
, and
Guo
,
X.
,
2018
, “
A Moving Morphable Void (MMV)-Based Explicit Approach for Topology Optimization Considering Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
334
, pp.
381
413
.
38.
Lei
,
X.
,
Liu
,
C.
,
Du
,
Z. L.
,
Zhang
,
W. S.
, and
Guo
,
X.
,
2018
, “
Machine Learning-Driven Real-Time Topology Optimization Under Moving Morphable Component-Based Framework
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011004
.
39.
Ballard
,
J.
,
Cinnella
,
P.
, and
Howington
,
S.
,
2009
, “
A Heat and Fluid Transport Simulation of a Soil-Root-Stem System
,”
AIAA
Paper No. 2009-4042.
40.
Kobayashi
,
M. H.
,
2010
, “
On a Biologically Inspired Topology Optimization Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
3
), pp.
787
802
.
41.
Peng
,
Y.
,
Liu
,
W. Y.
,
Wang
,
N. L.
,
Tian
,
Y. F.
, and
Chen
,
X. L.
,
2013
, “
A Novel Wick Structure of Vapor Chamber Based on the Fractal Architecture of Leaf Vein
,”
Int. J. Heat Mass Transfer
,
63
(
63
), pp.
120
133
.
42.
Xu
,
S. L.
,
Qin
,
J.
,
Guo
,
W.
, and
Fang
,
K.
,
2013
, “
The Design of an Asymmetric Bionic Branching Channel for Electronic Chips Cooling
,”
Heat Mass Transfer.
,
49
(
6
), pp.
827
834
.
43.
Mattheck
,
C.
, and
Burkhardt
,
S.
,
1990
, “
A New Method of Structural Shape Optimization Based on Biological Growth
,”
Int. J. Fatigue
,
12
(
3
), pp.
185
190
.
44.
Lohan
,
D. J.
,
Dede
,
E. M.
, and
Allison
,
J. T.
,
2015
, “
Topology Optimization for Heat Conduction Using Generative Design Algorithms
,”
Struct. Multidiscip. Optim.
,
55
(3), pp.
1
15
.
45.
Ding
,
X. H.
, and
Yamazaki
,
K.
,
2007
, “
Constructal Design of Cooling Channel in Heat Transfer System by Utilizing Optimality of Branch Systems in Nature
,”
ASME J. Heat Transfer
,
129
(
3
), pp.
245
255
.
46.
Junker
,
P.
, and
Hackl
,
K.
,
2015
, “
A Variational Growth Approach to Topology Optimization
,”
Struct. Multidiscip. Optim.
,
52
(
2
), pp.
1
12
.
47.
Jantos
,
D. R.
,
Junker
,
P.
, and
Hackl
,
K.
,
2016
, “
An Evolutionary Topology Optimization Approach With Variationally Controlled Growth
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
780
801
.
48.
Ding
,
X. H.
, and
Yamazaki
,
K.
,
2005
, “
Adaptive Growth Technique of Stiffener Layout Pattern for Plate and Shell Structures to Achieve Minimum Compliance
,”
Eng. Optim.
,
37
(
3
), pp.
259
276
.
49.
Jin
,
J.
,
Ding
,
X. H.
, and
Xiong
,
M.
,
2014
, “
Optimal Stiffener Layout of Plate/Shell Structures by Bionic Growth Method
,”
Comput. Struct.
,
135
, pp.
88
99
.
50.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
You do not currently have access to this content.