The dynamic characteristics of planar mechanisms with fuzzy joint clearance and random geometry are studied in this paper. The dynamics model for the mechanism is constructed by utilizing Baumgarte approach in which the clearance size is a fuzzy number, while the geometry parameters are assumed as random variables. A hybrid contact force model, which consists of the Lankarani–Nikravesh model, improved Winkler elastic foundation model and modified Coulomb friction force model, is applied to construct revolute clearance joint. In order to solve the dynamics model, two methodologies are developed: confidence region method for quantification of random and fuzzy uncertainties (CRMQRFU) and confidence region method with transformation method (CRMTM). In the CRMQRFU, fuzzy numbers are first decomposed into intervals under the given membership level. Then, a general framework is proposed for quantification of random and interval uncertainties in the mechanism. In the CRMTM, a transformation method is applied to transform intervals into deterministic arrays, while probability theory is used to obtain the confidence regions under the given fuzzy values. The confidence region, considering random and fuzzy uncertainties, is obtained by fuzzy set theory. Finally, two examples are used to demonstrate the validity and feasibility of these methods.

References

References
1.
Rao
,
S. S.
, and
Bhatti
,
P. K.
,
2001
, “
Probabilistic Approach to Manipulator Kinematics and Dynamics
,”
Reliab. Eng. Syst. Saf.
,
72
(
1
), pp.
47
58
.
2.
Batou
,
A.
, and
Soize
,
C.
,
2012
, “
Rigid Multibody System Dynamics With Uncertain Rigid Bodies
,”
Multibody Syst. Dyn.
,
27
(
3
), pp.
285
319
.
3.
Wang
,
S. X.
,
Wang
,
Y. H.
, and
He
,
B. Y.
,
2008
, “
Dynamic Modeling of Flexible Multibody Systems With Parameter Uncertainty
,”
Chaos Soliton. Fract.
,
36
(
3
), pp.
605
611
.
4.
Sandu
,
A.
,
Sandu
,
C.
, and
Ahmadian
,
M.
, “
Modeling Multibody Systems With Uncertainties—Part I: Theoretical and Computational Aspects
,”
Multibody Syst. Dyn.
,
15
(
4
), pp.
369
391
.
5.
Wu
,
J.
,
Luo
,
Z.
,
Zhang
,
N.
,
Zhang
,
Y.
, and
Walker
,
P. D.
,
2017
, “
Uncertain Dynamic Analysis for Rigid-Flexible Mechanisms With Random Geometry and Material Properties
,”
Mech. Syst. Signal Process.
,
85
, pp.
487
511
.
6.
Luo
,
K.
, and
Du
,
X. P.
,
2013
, “
Probabilistic Mechanism Analysis With Bounded Random Dimension Variables
,”
Mech. Mach. Theory
,
60
, pp.
112
121
.
7.
Tian
,
Q.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2018
, “
A Comprehensive Survey of the Analytical, Numerical and Experimental Methodologies for Dynamics of Multibody Mechanical Systems With Clearance or Imperfect Joints
,”
Mech. Mach. Theory
,
122
, pp.
1
57
.
8.
Ting
,
K.
,
Hsu
,
K.
,
Yu
,
Z.
, and
Wang
,
J.
,
2017
, “
Clearance-induced Output Position Uncertainty of Planar Linkages With Revolute and Prismatic Joints
,”
Mech. Mach. Theory
,
111
, pp.
66
75
.
9.
Yan
,
S.
, and
Guo
,
P.
,
2011
, “
Kinematic Accuracy Analysis of Flexible Mechanisms With Uncertain Link Lengths and Joint Clearances
,”
Proc. Inst. Mech. Eng., Part C–J
,
225
(
8
), pp.
1973
1983
.
10.
Li
,
J.
,
Huang
,
H.
,
Yan
,
S.
, and
Yang
,
Y.
,
2017
, “
Kinematic Accuracy and Dynamic Performance of a Simple Planar Space Deployable Mechanism With Joint Clearance Considering Parameter Uncertainty
,”
Acta Astronaut.
,
136
, pp.
34
45
.
11.
Wu
,
W. D.
, and
Rao
,
S. S.
,
2007
, “
Uncertainty Analysis and Allocation of Joint Tolerances in Robot Manipulators Based on Interval Analysis
,”
Reliab. Eng. Syst. Saf.
,
92
(
1
), pp.
54
64
.
12.
Wu
,
J. L.
,
Luo
,
Z.
,
Zhang
,
Y. Q.
,
Zhang
,
N.
, and
Chen
,
L. P.
,
2013
, “
Interval Uncertain Method for Multibody Mechanical Systems Using Chebyshev Inclusion Functions
,”
Int. J. Numer. Methods Eng.
,
95
(
7
), pp.
608
630
.
13.
Guerine
,
A.
,
Hami
,
A. E.
,
Walha
,
L.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2017
, “
Dynamic Response of Wind Turbine Gear System With Uncertain-but-Bounded Parameters Using Interval Analysis Method
,”
Renew. Energy
,
113
, pp.
679
687
.
14.
Wang
,
Z.
,
Tian
,
Q.
, and
Hu
,
H.
,
2016
, “
Dynamics of Spatial Rigid-Flexible Multibody Systems With Uncertain Interval Parameters
,”
Nonlinear Dyn.
,
84
(
2
), pp.
527
548
.
15.
Sun
,
D.
, and
Chen
,
G.
,
2016
, “
Kinematic Accuracy Analysis of Planar Mechanisms With Clearance Involving Random and Epistemic Uncertainty
,”
Eur. J. Mech. Solids
,
58
, pp.
256
261
.
16.
Wang
,
Z.
,
Tian
,
Q.
, and
Hu
,
H.
,
2018
, “
Dynamics of Flexible Multibody Systems With Hybrid Uncertain Parameters
,”
Mech. Mach. Theory
,
121
, pp.
128
147
.
17.
Wasfy
,
T. M.
, and
Noor
,
A. K.
,
1998
, “
Finite Element Analysis of Flexible Multibody Systems With Fuzzy Parameters
,”
Comput. Meth. Appl. Mech. Eng.
,
160
(
3–4
), pp.
223
243
.
18.
Wu
,
W. D.
, and
Rao
,
S. S.
,
2004
, “
Interval Approach for the Modeling of Tolerances and Clearances in Mechanism Analysis
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
581
592
.
19.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2008
, “
Representation of Analysis Results Involving Aleatory and Epistemic Uncertainty
,” Sandia National Laboratories, Albuquerque NM, Report No.
SAND2008-4379
.https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/084379.pdf
20.
Antonsson
,
E. K.
, and
Otto
,
K. N.
,
1995
, “
Imprecision in Engineering Design
,”
ASME J. Vib. Acoust.
,
117
(
B
), pp.
25
32
.
21.
Wood
,
K. L.
,
Otto
,
K. N.
, and
Antonsson
,
E. K.
,
1992
, “
Engineering Design Calculations With Fuzzy Parameters
,”
Fuzzy Sets Syst.
,
52
(
1
), pp.
1
20
.
22.
Otto
,
K. N.
, and
Antonsson
,
E. K.
,
1994
, “
Design Parameter Selection in the Presence of Noise
,”
Res. Eng. Des.
,
6
(
4
), pp.
234
246
.
23.
Scott
,
M. J.
, and
Antonsson
,
E. K.
,
1998
, “
Aggregation Functions for Engineering Design Trade-Offs
,”
Fuzzy Sets Syst.
,
99
(
3
), pp.
253
264
.
24.
Wood
,
K. L.
, and
Antonsson
,
E. K.
,
1990
, “
Modeling Imprecision and Uncertainty in Preliminary Engineering Design
,”
Mech. Mach. Theory
,
25
(
3
), pp.
305
324
.
25.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Method Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.
26.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
27.
Liu
,
C. S.
,
Zhang
,
K.
, and
Yang
,
R.
,
2007
, “
The FEM Analysis and Approximate Model for Cylindrical Joints With Clearances
,”
Mech. Mach. Theory
,
42
(
2
), pp.
183
197
.
28.
Bai
,
Z. F.
, and
Zhao
,
Y.
,
2012
, “
Dynamic Behaviour Analysis of Planar Mechanical Systems With Clearance in Revolute Joints Using a New Hybrid Contact Force Model
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
190
205
.
29.
Ambrósio
,
J. A. C.
,
2003
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Models
,”
Virtual Nonlinear Multibody Systems
,
Springer
, Dordrecht,
The Netherlands
, pp.
57
81
.
30.
Zadeh
,
L.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp.
338
353
.
31.
Wood
,
K. L.
, and
Antonsson
,
E. K.
,
1989
, “
Computations With Imprecise Parameters in Engineering Design: Background and Theory
,”
J. Mech. Transm. Autom. Des.
,
111
(
4
), pp.
616
625
.
32.
Haag
,
T.
,
González
,
S. C.
, and
Hanss
,
M.
,
2012
, “
Model Validation and Selection Based on Inverse Fuzzy Arithmetic
,”
Mech. Syst. Signal Process.
,
32
, pp.
116
134
.
33.
Hanss
,
M.
,
2002
, “
The Transformation Method for the Simulation and Analysis of Systems With Uncertain Parameters
,”
Fuzzy Sets Syst.
,
130
(
3
), pp.
277
289
.
34.
Moens
,
D.
, and
Hanss
,
M.
,
2011
, “
Non-Probabilistic Finite Element Analysis for Parametric Uncertainty Treatment in Applied Mechanics: Recent Advances
,”
Finite Elem. Anal. Des.
,
47
(
1
), pp.
4
16
.
35.
Sun
,
D. Y.
,
Chen
,
G. P.
,
Wang
,
T. C.
, and
Sun
,
R. J.
,
2014
, “
Wear Prediction of a Mechanism With Joint Clearance Involving Aleatory and Epistemic Uncertainty
,”
ASME J. Tribol.
,
136
(
4
), p.
041101
.
You do not currently have access to this content.