The array structure is widely used in precise electronic products such as large phased array antennas and large optical telescopes, the main components of which are a large surface base and a large number of high-precision discrete elements mounted on the surface base. The geometric error of discrete elements is inevitable in the manufacturing process and will seriously degrade the product performance. To deal with the tolerance design of discrete elements, a region-division-based tolerance design method is proposed in this paper. The whole array was divided into several regions by our method and the tolerance of discrete elements was correlated with the region importance on the performance. The method specifically includes the following steps: first, the sensitivity of the product performance to geometric errors was analyzed and the statistical relationship between the performance and geometric errors was established. Then, based on the sensitivity matrix, the regional division scheme was developed, and the corresponding tolerance was optimized according to the established relationship function. Finally, the optimal tolerance was selected among the multiple solutions to achieve the best performance. Taking a large phased array as an example, a simulation experiment was performed to verify the effectiveness of the proposed method.

References

References
1.
Chen
,
H.
,
Jin
,
S.
,
Li
,
Z.
, and
Lai
,
X.
,
2014
, “
A Comprehensive Study of Three Dimensional Tolerance Analysis Methods
,”
Comput.-Aided Des.
,
53
(
5
), pp.
1
13
.
2.
Liu
,
Z.
,
Tan
,
J.
, and
Duan
,
G.
,
2015
, “
Force Feedback Coupling With Dynamics for Physical Simulation of Product Assembly and Operation Performance
,”
Chin. J. Mech. Eng.
,
28
(
1
), pp.
164
172
.
3.
Singh
,
G.
,
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2013
, “
Tolerance Analysis and Allocation for Design of a Self-Aligning Coupling Assembly Using Tolerance-Maps
,”
ASME J. Mech. Des.
,
135
(
3
), p. 031005.
4.
Jiang
,
K.
,
Davidson
,
J. K.
,
Liu
,
J.
, and
Shah
,
J. J.
,
2014
, “
Using Tolerance Maps to Validate Machining Tolerances for Transfer of Cylindrical Datum in Manufacturing Process
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1–4
), pp.
465
478
.
5.
Xu
,
S.
, and
Keyser
,
J.
,
2016
, “
Statistical Geometric Computation on Tolerances for Dimensioning
,”
Comput.-Aided Des.
,
70
, pp.
193
201
.
6.
Yin
,
Y.
,
Hong
,
N.
,
Fei
,
F.
,
Xiaohui
,
W.
, and
Huajin
,
N.
,
2017
, “
Nonlinear Assembly Tolerance Design for Spatial Mechanisms Based on Reliability Methods
,”
ASME J. Mech. Des.
,
139
(
3
), p.
032301
.
7.
Schleich
,
B.
, and
Wartzack
,
S.
,
2014
, “
A Discrete Geometry Approach for Tolerance Analysis of Mechanism
,”
Mech. Mach. Theory
,
77
, pp.
148
163
.
8.
Ciattaglia
,
E.
,
Dupuy
,
C.
,
Gago
,
F.
,
Guisard
,
S.
,
Marrero
,
J.
,
Ridings
,
R.
, and
Wright
,
A.
,
2016
, “
E-ELT Assembly, Integration, and Technical Commissioning Plans
,”
Ground-Based and Airborne Telescopes VI
(
International Society for Optics and Photonics
, Vol. 9906), p.
99060X
.
9.
Winkler
,
D. F.
, and
Webster
,
J. L.
,
1997
, “
Searching the Skies: The Legacy of the United States Cold War Defense Radar Program (No. SR-97-78)
,” Construction Engineering Research Lab (Army), Champaign IL.
10.
Li
,
F.
,
2003
, “
A Method for Detection of Deformations in Large Phased Array Antennas for Spaceborne Synthetic Aperture Radars
,”
IEEE Trans. Antennas Propag.
,
32
(
5
), pp.
512
517
.
11.
Elliott
,
R.
,
1958
, “
Mechanical and Electrical Tolerances for Two-Dimensional Scanning Antenna Arrays
,”
IRE Trans. Antennas Propag.
,
6
(
1
), pp.
114
120
.
12.
Agrawal
,
A. K.
,
Kopp
,
B. A.
,
Luesse
,
M. H.
, and
O Haver
,
K. W.
,
2001
, “
Active Phased Array Antenna Development for Modern Shipboard Radar Systems
,”
Johns Hopkins APL Tech. Digest
,
22
(
4
), pp.
600
613
.http://www.jhuapl.edu/techdigest/TD/td2204/Agrawal.pdf
13.
Fu
,
W.
, and
Nelaturi
,
S.
,
2017
, “
Automatic Tolerance Analysis for Assessing Manufacturing Errors in Machining Plans
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041701
.
14.
Ruze
,
J.
,
1952
, “
The Effect of Aperture Errors on the Antenna Radiation Pattern
,”
Il Nuovo Cimento (1943–1954)
,
9
(
S3
), pp.
364
380
.
15.
Yuan
,
P.
,
Liu
,
Z.
, and
Tan
,
J.
,
2017
, “
Shape Error Analysis of Functional Surface Based on Isogeometrical Approach
,”
Chin. J. Mech. Eng.
,
30
(
3
), pp.
544
552
.
16.
Schmid
,
C. M.
,
Schuster
,
S.
,
Feger
,
R.
, and
Stelzer
,
A.
,
2013
, “
On the Effects of Calibration Errors and Mutual Coupling on the Beam Pattern of an Antenna Array
,”
IEEE Trans. Antennas Propag.
,
61
(
8
), pp.
4063
4072
.
17.
Anselmi
,
N.
,
Manica
,
L.
,
Rocca
,
P.
, and
Massa
,
A.
,
2013
, “
Tolerance Analysis of Antenna Arrays Through Interval Arithmetic
,”
IEEE Trans. Antennas Propag.
,
61
(
11
), pp.
5496
5507
.
18.
Anselmi
,
N.
,
Salucci
,
M.
,
Rocca
,
P.
, and
Massa
,
A.
,
2016
, “
Power Pattern Sensitivity to Calibration Errors and Mutual Coupling in Linear Arrays Through Circular Interval Arithmetics
,”
Sensors
,
16
(
6
), p.
791
.
19.
Wang
,
C.
,
Kang
,
M.
,
Wang
,
W.
,
Zhong
,
J.
,
Zhang
,
Y.
,
Jiang
,
C.
, and
Duan
,
B.
,
2016
, “
Electromechanical Coupling Based Performance Evaluation of Distorted Phased Array Antennas With Random Position Errors
,”
Int. J. Appl. Electromagn. Mech.
,
51
(
3
), pp.
285
295
.
20.
Hwang
,
S.
, and
Sarkar
,
T.
,
2004
, “
Allowable Tolerances in the Position of Antenna Elements in an Array Amenable to Adaptive Processing
,”
Microwave Opt. Technol. Lett.
,
43
(
3
), pp.
215
221
.
21.
Lee
,
J.
,
Lee
,
Y.
, and
Kim
,
H.
,
2005
, “
Decision of Error Tolerance in Array Element by the Monte Carlo Method
,”
IEEE Trans. Antennas Propag.
,
53
(
4
), pp.
1325
1331
.
22.
Peng
,
X.
,
Li
,
J.
, and
Jiang
,
S.
,
2017
, “
Unified Uncertainty Representation and Quantification Based on Insufficient Input Data
,”
Struct. Multidiscip. Optim.
,
56
(
6
), pp.
1305
1317
.
23.
Peng
,
X.
,
Wu
,
T.
,
Li
,
J.
,
Jiang
,
S.
,
Qiu
,
C.
, and
Yi
,
B.
,
2018
, “
Hybrid Reliability Analysis With Uncertain Statistical Variables, Sparse Variables and Interval Variables
,”
Eng. Optim.
,
50
(8), pp. 1347–1363.
24.
Mailloux
,
R. J.
,
2005
,
Phased Array Antenna Handbook (Vol. 2)
,
Artech House
,
Boston, MA
.
25.
Wainwright
,
H. M.
,
Finsterle
,
S.
,
Jung
,
Y.
,
Zhou
,
Q.
, and
Birkholzer
,
J. T.
,
2014
, “
Making Sense of Global Sensitivity Analyses
,”
Comput. Geosci.
,
65
, pp.
84
94
.
26.
Singh
,
H.
,
Sneha
,
H. L.
, and
Jha
,
R. M.
,
2013
, “
Mutual Coupling in Phased Arrays: A Review
,”
Int. J. Antennas Propag.
,
2013
, p. 23.
27.
Lindgren
,
T.
, and
Borg
,
J.
,
2012
, “
A Measurement System for the Position and Phase Errors of the Elements in an Antenna Array Subject to Mutual Coupling
,”
Int. J. Antennas Propag.
,
2012
, pp. 1–8.
28.
Liu
,
S. G.
,
Jin
,
Q.
,
Liu
,
C.
, and
Xie
,
R. J.
,
2013
, “
Analytical Method for Optimal Component Tolerances Based on Manufacturing Cost and Quality Loss
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
227
(
10
), pp.
1484
1491
.
You do not currently have access to this content.