Origami folding provides a novel method to transform two-dimensional (2D) sheets into complex functional structures. However, the enormity of the foldable design space necessitates development of algorithms to efficiently discover new origami fold patterns with specific performance objectives. To address this challenge, this work combines a recently developed efficient modified truss finite element model with a ground structure-based topology optimization framework. A nonlinear mechanics model is required to model the sequenced motion and large folding common in the actuation of origami structures. These highly nonlinear motions limit the ability to define convex objective functions, and parallelizable evolutionary optimization algorithms for traversing nonconvex origami design problems are developed and considered. The ability of this framework to discover fold topologies that maximize targeted actuation is verified for the well-known “Chomper” and “Square Twist” patterns. A simple twist-based design is also discovered using the verified framework. Through these case studies, the role of critical points and bifurcations emanating from sequenced deformation mechanisms (including interplay of folding, facet bending, and stretching) on design optimization is analyzed. In addition, the performance of both gradient and evolutionary optimization algorithms are explored, and genetic algorithms (GAs) consistently yield solutions with better performance given the apparent nonconvexity of the response-design space.

References

References
1.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
2.
Schenk
,
M.
,
Viquerat
,
A. D.
,
Seffen
,
K. A.
, and
Guest
,
S. D.
,
2014
, “
Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization
,”
J. Spacecr. Rockets
,
51
(3), pp. 762–778.
3.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng., A
,
419
(
1–2
), pp.
131
137
.
4.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
5.
Boatti
,
E.
,
Vasios
,
N.
, and
Bertoldi
,
K.
,
2017
, “
Origami Metamaterials for Tunable Thermal Expansion
,”
Adv. Mater.
,
29
(
26
), p.
1700360
.
6.
Gattas
,
J.
, and
You
,
Z.
,
2015
, “
The Behaviour of Curved-Crease Foldcores Under Low-Velocity Impact Loads
,”
Int. J. Solids Struct.
,
53
, pp.
80
91
.
7.
Balkcom
,
D. J.
, and
Mason
,
M. T.
,
2008
, “
Robotic Origami Folding
,”
Int. J. Rob. Res.
,
27
(
5
), pp.
613
627
.
8.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
430
438
.
9.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-Stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
.
10.
Fuchi
,
K.
,
Tang
,
J.
,
Crowgey
,
B.
,
Diaz
,
A. R.
,
Rothwell
,
E. J.
, and
Ouedraogo
,
R. O.
,
2012
, “
Origami Tunable Frequency Selective Surfaces
,”
IEEE Antennas Wireless Propag. Lett.
,
11
, pp.
473
475
.
11.
Liu
,
X.
,
Yao
,
S.
,
Cook
,
B. S.
,
Tentzeris
,
M. M.
, and
Georgakopoulos
,
S. V.
,
2015
, “
An Origami Reconfigurable Axial-Mode Bifilar Helical Antenna
,”
IEEE Trans. Antennas Propag.
,
63
(
12
), pp.
5897
5903
.
12.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Malak
,
R. J.
, Jr.
, and
Lagoudas
,
D. C.
,
2014
, “
Origami-Inspired Active Structures: A Synthesis and Review
,”
Smart Mater. Struct.
,
23
(
9
), p.
094001
.
13.
Turner
,
N.
,
Goodwine
,
B.
, and
Sen
,
M.
,
2016
, “
A Review of Origami Applications in Mechanical Engineering
,”
Inst. Mech. Eng., Part C
,
230
(
14
), pp.
2345
2362
.
14.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
J. Int. Assn. Shell Spatial Struct.
,
50
(3), pp. 173–179.https://www.ingentaconnect.com/content/iass/jiass/2009/00000050/00000003/art00009
15.
Tachi
,
T.
, 2006, “
3D Origami Design Based on Tucking Molecule
,”
Fourth International Conference on Origami in Science, Mathematics, and Education
, Pasadena, CA, Sept. 8–10, pp.
259
272
.http://www.tsg.ne.jp/TT/cg/3DOrigamiDesign_tachi_4OSME.pdf
16.
Lang
,
R. J.
,
1996
, “
A Computational Algorithm for Origami Design
,”
12th Annual Symposium on Computational Geometry
, Philadelphia, PA, May 24–26, pp.
98
105
.
17.
Lang
,
R.
,
2011
,
Origami Design Secrets: Mathematical Method for an Ancient Art
,
2nd ed.
,
AK Peters/CRC Press
,
Boca Raton, FL
.
18.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithms
,
Cambridge University Press
, New York.
19.
Belcastro
,
S.-M.
, and
Hull
,
T.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
(
1–3
), pp.
273
282
.
20.
Belcastro
,
S.-M.
, and
Hull
,
T.
,
2002
, “
A Mathematical Model for Non-Flat Origami
,”
Third International Meeting of Origami Mathematics
, Science, and Education, Monterey, CA, pp.
39
51
.
21.
Tachi
,
T.
,
2010
, “
Origamizing Polyhedral Surfaces
,”
IEEE Trans. Visualization Comput. Graph.
,
16
(
2
), pp.
298
311
.
22.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2017
, “
Design and Simulation of Origami Structures With Smooth Folds
,”
Proc. R. Soc. A
,
473
(
2200
), p. 20160716.
23.
Zhou
,
X.
,
Wang
,
H.
, and
You
,
Z.
,
2015
, “
Design of Three-Dimensional Origami Structures Based on a Vertex Approach
,”
Proc. R. Soc. A
,
471
(
2181
), p. 20150407.
24.
Martínez-Martín
,
F.
, and
Thrall
,
A.
,
2014
, “
Honeycomb Core Sandwich Panels for Origami-Inspired Deployable Shelters: Multi-Objective Optimization for Minimum Weight and Maximum Energy Efficiency
,”
Eng. Struct.
,
69
, pp.
158
167
.
25.
Peraza-Hernandez
,
E.
,
Hartl
,
D.
,
Galvan
,
E.
, and
Malak
,
R.
,
2013
, “
Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111007
.
26.
Bowen
,
L.
,
Springsteen
,
K.
,
Frecker
,
M.
, and
Simpson
,
T.
,
2016
, “
Trade Space Exploration of Magnetically Actuated Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031012
.
27.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
28.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Multidiscip. Optim.
,
16
(
1
), pp.
68
75
.
29.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in MATLAB
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.
30.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
, Berlin.
31.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
32.
Fuchi
,
K.
, and
Diaz
,
A. R.
,
2013
, “
Origami Design by Topology Optimization
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111003
.
33.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2015
, “
Origami Actuator Design and Networking Through Crease Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091401
.
34.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2016
, “
Design Optimization Challenges of Origami-Based Mechanisms With Sequenced Folding
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051011
.
35.
Tachi
,
T.
,
2010
, “
Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh
,”
Advances in Architectural Geometry
, Springer, Vienna, Austria, pp.
87
102
.
36.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
, CRC Press, Boca Raton, FL, pp.
291
304
.
37.
Liu
,
K.
, and
Paulino
,
G.
,
2017
, “
Nonlinear Mechanics of Non-Rigid Origami: An Efficient Computational Approach
,”
Proc. R. Soc. A
,
473
(
2206
), p.
20170348
.
38.
Filipov
,
E.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.
39.
Gillman
,
A.
,
Fuchi
,
K.
, and
Buskohl
,
P. R.
,
2018
, “
Truss-Based Nonlinear Mechanical Analysis for Origami Structures Exhibiting Bifurcation and Limit Point Instabilities
,”
Int. J. Solids Struct.
,
147
, pp.
80
93
.
40.
Greco
,
M.
,
Gesualdo
,
F.
,
Venturini
,
W.
, and
Coda
,
H.
,
2006
, “
Nonlinear Positional Formulation for Space Truss Analysis
,”
Finite Elem. Anal. Des.
,
42
(
12
), pp.
1079
1086
.
41.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
42.
Gill
,
P.
,
Murray
,
W.
, and
Wright
,
M.
,
1991
,
Numerical Linear Algebra and Optimization
,
Addison Wesley
, New York.
43.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), pp.
149
185
.
44.
MATLAB
,
2016
,
Version 9.1.0 (R2016b)
,
The MathWorks Inc.
,
Natick, MA
.
45.
Kepner
,
J.
, and
Ahalt
,
S.
,
2004
, “
MATLABMPI
,”
J. Parallel Distributed Comput.
,
64
(
8
), pp.
997
1005
.
46.
Gillman
,
A.
,
Fuchi
,
K.
,
Bazzan
,
G.
,
Alyanak
,
E. J.
, and
Buskohl
,
P. R.
,
2017
, “
Discovering Origami Fold Patterns With Optimal Actuation Through Nonlinear Mechanics Analysis
,”
ASME
Paper No. DETC2017–67927.
You do not currently have access to this content.