Additive manufacturing (AM) has unique capabilities when compared to traditional manufacturing, such as shape, hierarchical, functional, and material complexity, a fact that has fascinated those in research, industry, and the media for the last decade. Consequently, designers would like to know how they can incorporate AM's special capabilities into their designs but are often at a loss as how to do so. Design for additive manufacturing (DfAM) methods are currently in development, but the vast majority of existing methods are not tailored to the needs and knowledge of designers in the early stages of the design process. Therefore, we propose a set of process-independent design heuristics for AM aimed at transferring the high-level knowledge necessary for reasoning about functions, configurations, and parts to designers. Twenty-nine design heuristics for AM are derived from 275 AM artifacts. An experiment is designed to test their efficacy in the context of a redesign scenario with novice designers. The heuristics are found to positively influence the designs generated by the novice designers and are found to be more effective at communicating DfAM concepts in the early phases of redesign than a lecture on DfAM alone. Future research is planned to validate the impact with expert designers and in original design scenarios.

References

References
1.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
, “
Design for Additive Manufacturing
,”
Additive Manufacturing Technologies
,
Springer
,
New York
, pp.
399
435
.
2.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
737
760
.
3.
Seepersad
,
C. C.
,
2014
, “
Challenges and Opportunities in Design for Additive Manufacturing
,”
3D Print. Addit. Manuf.
,
1
(
1
), pp.
10
13
.
4.
Rosen
,
D. W.
,
2016
, “
A Review of Synthesis Methods for Additive Manufacturing
,”
Virtual Phys. Prototyping
, (
4
), pp.
305
317
.
5.
Yao
,
M.
,
Chen
,
Z.
,
Luo
,
L.
,
Wang
,
R.
, and
Wang
,
H.
,
2015
, “
Level-Set-Based Partitioning and Packing Optimization of a Printable Model
,”
ACM Trans. Graph.
,
34
(
6
), p. 214.
6.
Stanković
,
T.
,
Mueller
,
J.
, and
Shea
,
K.
,
2016
, “
Optimization for Anisotropy in Additively Manufactured Lattice Structures
,”
ASME
Paper No. DETC2016-59494.
7.
Mani
,
M.
,
Witherell
,
P.
, and
Jee
,
H.
,
2017
, “
Design Rules for Additive Manufacturing: A Categorization
,”
ASME
Paper No. DETC2017-68446
.
8.
Stöckli
,
F.
,
Modica
,
F.
, and
Shea
,
K.
,
2016
, “
Designing Passive Dynamic Walking Robots for Additive Manufacture
,”
Rapid Prototyping J.
,
22
(
5
), pp.
842
847
.
9.
Adam
,
G. A. O.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
10.
Chen
,
T.
,
Stoeckli
,
F.
, and
Shea
,
K.
,
2015
, “
Design for Mass Customization Using Additive Manufacture: Case-Study of a Balloon-Powered Car
,”
20th International Conference on Engineering Design (ICED15)
, Milan, Italy, July 27–30, pp. 245–254.
11.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2008
,
Product Design and Development
,
McGraw-Hill
,
Boston, MA
.
12.
Ehrlenspiel
,
K.
,
Kiewert
,
A.
, and
Lindemann
,
U.
,
2007
,
Cost-Efficient Design
,
Springer-Verlag
,
Berlin
.
13.
Bourell
,
D. L.
,
Rosen
,
D. W.
, and
Leu
,
M. C.
,
2014
, “
The Roadmap for Additive Manufacturing and Its Impact
,”
3D Printing Addit. Manuf.
,
1
(
1
), pp.
6
9
.
14.
Seepersad
,
C. C.
,
Allison
,
J.
, and
Sharpe
,
C.
,
2017
, “
The Need for Effective Design Guides in Additive Manufacturing
,”
21st International Conference on Engineering Design (ICED17)
, Vancouver, BC, Canada, Aug. 21–25, pp. 309–316.
15.
Watschke
,
H.
,
Bavendiek
,
A.-K.
,
Giannakos
,
A.
, and
Vietor
,
T.
,
2017
, “
A Methodical Approach to Support Ideation for Additive Manufacturing in Design Education
,”
21st International Conference on Engineering Design (ICED17)
, Vancouver, BC, Canada, Aug. 21–25, pp. 41–50.
16.
Laverne
,
F.
,
Segonds
,
F.
,
D'Antonio
,
G.
, and
Le Coq
,
M.
,
2016
, “
Enriching Design With X Through Tailored Additive Manufacturing Knowledge: A Methodological Proposal
,”
Int. J. Interact. Des. Manuf.
,
11
(
2
), pp.
279
288
.
17.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121701
.
18.
Fu
,
K. K.
,
Yang
,
M. C.
, and
Wood
,
K. L.
,
2016
, “
Design Principles: Literature Review, Analysis, and Future Directions
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101103
.
19.
Yilmaz
,
S.
, and
Seifert
,
C. M.
,
2010
, “
Cognitive Heuristics in Design Ideation
,”
International Engineering Design Conference
(
Design 2010
), Dubrovnik, Croatia, May 17–20, pp. 1007–1016.https://www.designsociety.org/publication/29446/COGNITIVE+HEURISTICS+IN+DESIGN+IDEATION
20.
Kellner
,
T.
,
2014
, “
Fit To Print: New Plant Will Assemble World's First Passenger Jet Engine With 3D Printed Fuel Nozzles, Next-Gen Materials
,” General Electric, Boston, MA, accessed Nov. 29, 2016, http://www.gereports.com/post/80701924024/fit-to-print
21.
Lipson
,
H.
,
Moon
,
F. C.
,
Hai
,
J.
, and
Paventi
,
C.
,
2005
, “
3-D Printing the History of Mechanisms
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1029
1033
.
22.
EOS
,
2015
, “
Aerospace: Vectorflow—Additive Manufacturing of Probes for Measuring Speed and Temperature in Turbo Engines
,” EOS, Krailling, Germany, accessed Nov. 29, 2016, https://www.eos.info/aerospace-vectoflow-additive-manufacturing-of-probes-for-measuring-speed-and-temperature-in-turbo-engines-ea0691d8a20ee1eb
23.
Jones
,
J.
,
Jones
,
C. L.
, and
Wimpenny
,
D. I.
,
2009
, “
Customised Rapid Manufactured Parts: Technology and Case Studies From the Custom-Fit Project
,”
Solid Freeform Fabrication Symposium
, Austin, TX, pp.
662
672
.
24.
Materialise
,
2014
, “
Kipling: No Monkey Business
,” Materialise, Leuven, Belgium, accessed Nov. 29, 2016, http://www.materialise.com/cases/kipling-no-monkey-business
25.
AAO
,
2014
, “
3-D Printed Facial Prosthesis Offers New Hope for Eye Cancer Patients Following Surgery
,” American Academy of Ophthalmology, Chicago, IL.
26.
Keating
,
S.
, and
Oxman
,
N.
,
2013
, “
Compound Fabrication: A Multi-Functional Robotic Platform for Digital Design and Fabrication
,”
Rob. Comput.-Integr. Manuf.
,
29
(
6
), pp.
439
448
.
27.
Vidimče
,
K.
,
Wang
,
S.-P.
,
Ragan-Kelley
,
J.
, and
Matusik
,
W.
,
2013
, “
OpenFab: A Programmable Pipeline for Multi-Material Fabrication
,”
ACM Trans. Graph.
,
32
(
4
), p. 136.
28.
EOS
,
2015
, “
Improved Quality of Life Thanks to Cranial Implants Produced with Additive Manufacturing
,” EOS, Krailling, Germany, accessed Nov. 29, 2016, https://scrivito-public-cdn.s3-eu-west-1.amazonaws.com/eos/public/1d0369c9fdb43f6a/b89eccf1571d0c7004f4a55b9e660bb5/download_Case_Study_alphaform_canial_implant.pdf
29.
EOS
,
2013
, “
Medical: University of Michigan—Customizing a Biocompatible Material for Additively Manufactured Medical Implants
,” EOS, Krailling, Germany, accessed Nov. 29, 2016, https://www.eos.info/press/customer_case_studies/University-of-michigan-biocompatible-material-for-additive-manufacturing
30.
Hopkinson
,
N.
,
Gao
,
Y.
, and
McAfee
,
D. J.
,
2006
, “
Design for Environment Analyses Applied to Rapid Manufacturing
,”
Proc. Inst. Mech. Eng., Part D
,
220
(
10
), pp.
1363
1372
.
31.
Wagner
,
M.
,
Chen
,
T.
, and
Shea
,
K.
,
2017
, “
Large Shape Transforming 4D Auxetic Structures
,”
3D Print. Addit. Manuf.
,
4
(3), pp. 133–142.https://www.liebertpub.com/doi/abs/10.1089/3dp.2017.0027?journalCode=3dp
32.
Bickel
,
B.
,
Bächer
,
M.
,
Otaduy
,
M. A.
,
Lee
,
H. R.
,
Pfister
,
H.
,
Gross
,
M.
, and
Matusik
,
W.
,
2010
, “
Design and Fabrication of Materials With Desired Deformation Behavior
,”
ACM Trans. Graph.
,
29
(
4
), p. 63.
33.
Sengeh
,
D. M.
, and
Herr
,
H.
,
2013
, “
A Variable-Impedance Prosthetic Socket for a Transtibial Amputee Designed From Magnetic Resonance Imaging Data
,”
J. Prosthet. Orthotics
,
25
(
3
), pp.
129
137
.
34.
Stankovic
,
T.
,
Mueller
,
J.
,
Egan
,
P.
, and
Shea
,
K.
,
2015
, “
A Generalized Optimality Criteria Method for Optimization of Additively Manufactured Multimaterial Lattice Structures
,”
ASME J. Mech. Des.
,
137
(
11
), p. 011405.
35.
Dapino
,
M.
,
2014
, “
Additive Manufacturing of Smart Metallic Structures
,” SPIE Newsroom, SPIE, Bellingham, WA, accessed Nov. 29, 2016, http://spie.org/newsroom/5322-additive-manufacturing-of-smart-metallic-structures?SSO=1
36.
Castillo
,
S.
,
Muse
,
D.
,
Medina
,
F.
,
MacDonald
,
E.
, and
Wicker
,
R.
,
2009
, “
Electronics Integration in Conformal Substrates Fabricated With Additive Layered Manufacturing
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, pp.
730
737
.http://sffsymposium.engr.utexas.edu/Manuscripts/2009/2009-63-Castillo.pdf
37.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graph.
,
31
(
6
), p. 130.
38.
Ponche
,
R.
,
Kerbrat
,
O.
,
Mognol
,
P.
, and
Hascoet
,
J.-Y.
,
2014
, “
A Novel Methodology of Design for Additive Manufacturing Applied to Additive Laser Manufacturing Process
,”
Rob. Comput.-Integr. Manuf.
,
30
(
4
), pp.
389
398
.
39.
Montgomery
,
J.
,
Vaughan
,
M.
, and
Crawford
,
R.
,
2009
, “
Investigation and Design of an Actively Actuated Lower-Leg Prosthetic Socket
,”
Solid Freeform Fabrication Symposium
, Austin, TX, pp.
595
606
.
40.
Johnson
,
A.
,
Bingham
,
G. A.
, and
Wimpenny
,
D. I.
,
2013
, “
Additive Manufactured Textiles for High‐Performance Stab Resistant Applications
,”
Rapid Prototyping J.
,
19
(
3
), pp.
199
207
.
41.
Paterson
,
A. M.
,
Bibb
,
R.
,
Campbell
,
R. I.
, and
Bingham
,
G.
,
2015
, “
Comparing Additive Manufacturing Technologies for Customised Wrist Splints
,”
Rapid Prototyping J.
,
21
(
3
), pp.
230
243
.
42.
Loncke
,
D.
,
2014
, “
Following Moore's Law
,”
Mikroniek
,
54
(
6
), pp.
17
22
.http://www.dspe.nl/cms_file.php?fromDB=1672
43.
Chen
,
T.
, and
Shea
,
K.
,
2016
, “
Design and Fabrication of Hierarchical Multi-Stable Structures Through Multi-Material Additive Manufacturing
,”
ASME
Paper No. DETC2016-59856.
44.
Cohen
,
J.
,
1960
, “
A Coefficient of Agreement for Nominal Scales
,”
Educ. Psychol. Meas.
,
20
(
1
), pp.
37
46
.
45.
Hayes
,
A. F.
,
2005
,
Statistical Methods For Communication Science
,
Lawrence Erlbaum Associates, Inc
.,
Mahwah, NJ
.
46.
Yilmaz
,
S.
,
Seifert
,
C. M.
, and
Gonzalez
,
R.
,
2010
, “
Cognitive Heuristics in Design: Instructional Strategies to Increase Creativity in Idea Generation
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
24
(
3
), pp.
335
355
.
47.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2017
, “
Design Heuristics for Additive Manufacturing
,”
21st International Conference on Engineering Design
(
ICED17
), Vancouver, BC, Canada, Aug. 21–25, pp. 91–100.https://www.designsociety.org/publication/39731/Design+heuristics+for+additive+manufacturing
You do not currently have access to this content.