Topology optimization for mechanism synthesis has been developed for the simultaneous determination of the number and dimension of mechanisms. However, these methods can be used to synthesize linkage mechanisms that consist only of links and joints because other types of mechanical elements such as gears cannot be simultaneously synthesized. In this study, we aim to develop a gradient-based topology optimization method which can be used to synthesize mechanisms consisting of both linkages and gears. For the synthesis, we propose a new ground model defined by two superposed design spaces: the linkage and gear design spaces. The gear design space is discretized by newly proposed gear blocks, each of which is assumed to rotate as an output gear, while the linkage design space is discretized by zero-length-spring-connected rigid blocks. Another set of zero-length springs is introduced to connect gear blocks to rigid blocks, and their stiffness values are varied to determine the existence of gears when they are necessary to produce the desired path. After the proposed topology-optimization-based synthesis formulation and its numerical implementation are presented, its effectiveness and validity are checked with various synthesis examples involving gear-linkage and linkage-only mechanisms.

References

References
1.
Zhang
,
C.
,
Norton
,
P. R.
, and
Hammonds
,
T.
,
1984
, “
Optimization of Parameters for Specified Path Generation Using an Atlas of Coupler Curves of Geared Five-Bar Linkages
,”
Mech. Mach. Theory
,
19
(
6
), pp.
459
466
.
2.
Dooner
,
D.
,
1999
, “
A Geared 2-dof Mechanical Function Generator
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
65
70
.
3.
Nokleby
,
S. B.
, and
Podhorodeski
,
R. P.
,
2001
, “
Optimization-Based Synthesis of Grashof Geared Five-Bar Mechanisms
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
529
534
.
4.
Beiner
,
L.
,
2001
, “
A Three-Gear Linkage for Generating Dwell Motions
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
637
640
.
5.
Pennock
,
G. R.
, and
Sankaranarayanan
,
H.
,
2003
, “
Path Curvature of a Geared Seven-Bar Mechanism
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1345
1361
.
6.
Liu
,
J.
,
Chang
,
S.
, and
Mundo
,
D.
,
2006
, “
Study on the Use of a Non-Circular Gear Train for the Generation of Figure-8 Patterns
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
8
), pp.
1229
1236
.
7.
Chen
,
D.-Z.
,
Shieh
,
W.-B.
, and
Yeh
,
Y.-C.
,
2008
, “
Kinematic Characteristics and Classification of Geared Mechanisms Using the Concept of Kinematic Fractionation
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082602
.
8.
Mundo
,
D.
,
Gatti
,
G.
, and
Dooner
,
D.
,
2009
, “
Optimized Five-Bar Linkages With Non-Circular Gears for Exact Path Generation
,”
Mech. Mach. Theory
,
44
(
4
), pp.
751
760
.
9.
Buśkiewicz
,
J.
,
2010
, “
Use of Shape Invariants in Optimal Synthesis of Geared Five-Bar Linkage
,”
Mech. Mach. Theory
,
45
(
2
), pp.
273
290
.
10.
Coros
,
S.
,
Thomaszewski
,
B.
,
Noris
,
G.
,
Sueda
,
S.
,
Forberg
,
M.
,
Sumner
,
R. W.
,
Matusik
,
W.
, and
Bickel
,
B.
,
2013
, “
Computational Design of Mechanical Characters
,”
ACM Trans. Graphics
,
32
(
4
), p.
83
.
11.
Sandhya
,
R.
,
Kadam
,
M.
,
Balamurugan
,
G.
, and
Rangavittal
,
H.
, 2015, “
Synthesis and Analysis of Geared Five Bar Mechanism for Ornithopter Applications
,”
Second International and 17th National Conference on Machines and Mechanisms
,
Kanpur, Indian
,
Dec. 16–19
.
12.
Kamesh
,
V. V.
,
Rao
,
K. M.
, and
Rao
,
A. B. S.
,
2017
, “
An Innovative Approach to Detect Isomorphism in Planar and Geared Kinematic Chains Using Graph Theory
,”
ASME J. Mech. Des.
,
139
(
12
), p.
122301
.
13.
Kawamoto
,
A.
,
2004
, “
Generation of Articulated Mechanisms by Optimization Techniques
,”
Ph.D. thesis
, Technical University of Denmark, Lyngby, Denmark.http://orbit.dtu.dk/files/3025833/Generation%20of%20Articulated%20Mechanisms%20by%20Optimization%20Techniques.pdf
14.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Planar Articulated Mechanism Design by Graph Theoretical Enumeration
,”
Struct. Multidiscip. Optim.
,
27
(
4
), pp.
295
299
.
15.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Articulated Mechanism Design With a Degree of Freedom Constraint
,”
Int. J. Numer. Methods Eng.
,
61
(
9
), pp.
1520
1545
.
16.
Sedlaczek
,
K.
, and
Eberhard
,
P.
,
2009
, “
Topology Optimization of Large Motion Rigid Body Mechanisms With Nonlinear Kinematics
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021011
.
17.
Ohsaki
,
M.
, and
Nishiwaki
,
S.
,
2009
, “
Generation of Link Mechanism by Shape-Topology Optimization of Trusses Considering Geometrical Nonlinearity
,”
J. Comput. Sci. Technol.
,
3
(
1
), pp.
46
53
.
18.
Yoon
,
G. H.
, and
Heo
,
J. C.
,
2012
, “
Constraint Force Design Method for Topology Optimization of Planar Rigid-Body Mechanisms
,”
Comput.-Aided Des.
,
44
(
12
), pp.
1277
1296
.
19.
Heo
,
J. C.
, and
Yoon
,
G. H.
,
2013
, “
Size and Configuration Syntheses of Rigid-Link Mechanisms With Multiple Rotary Actuators Using the Constraint Force Design Method
,”
Mech. Mach. Theory
,
64
, pp.
18
38
.
20.
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2014
, “
Topology Optimization of Planar Linkage Mechanisms
,”
Int. J. Numer. Methods Eng.
,
98
(
4
), pp.
265
286
.
21.
Kim
,
S. I.
,
Kang
,
S. W.
,
Yi
,
Y. S.
,
Park
,
J.
, and
Kim
,
Y. Y.
,
2017
, “
Topology Optimization of Vehicle Rear Suspension Mechanisms
,”
Int. J. Numer. Methods Eng.
,
113
(8), pp. 1412–1433.
22.
Kim
,
Y. Y.
,
Jang
,
G.-W.
,
Park
,
J. H.
,
Hyun
,
J. S.
, and
Nam
,
S. J.
,
2007
, “
Automatic Synthesis of a Planar Linkage Mechanism With Revolute Joints by Using Spring-Connected Rigid Block Models
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
930
940
.
23.
Kang
,
S. W.
,
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2016
, “
Topology Optimization of Planar Linkage Systems Involving General Joint Types
,”
Mech. Mach. Theory
,
104
, pp.
130
160
.
24.
Han
,
S. M.
,
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2017
, “
Topology Optimization of Planar Linkage Mechanisms for Path Generation Without Prescribed Timing
,”
Struct. Multidiscip. Optim.
,
56
(
3
), pp.
501
517
.
25.
Kim
,
B. S.
, and
Yoo
,
H. H.
,
2012
, “
Unified Synthesis of a Planar Four-Bar Mechanism for Function Generation Using a Spring-Connected Arbitrarily Sized Block Model
,”
Mech. Mach. Theory
,
49
, pp.
141
156
.
26.
Kim
,
B. S.
, and
Yoo
,
H. H.
,
2014
, “
Unified Mechanism Synthesis Method of a Planar Four-Bar Linkage for Path Generation Employing a Spring-Connected Arbitrarily Sized Rectangular Block Model
,”
Multibody Syst. Dyn.
,
31
(
3
), pp.
241
256
.
27.
Kim
,
B. S.
, and
Yoo
,
H. H.
,
2015
, “
Body Guidance Syntheses of Four-Bar Linkage Systems Employing a Spring-Connected Block Model
,”
Mech. Mach. Theory
,
85
, pp.
147
160
.
28.
Nam
,
S. J.
,
Jang
,
G.-W.
, and
Kim
,
Y. Y.
,
2012
, “
The Spring-Connected Rigid Block Model Based Automatic Synthesis of Planar Linkage Mechanisms: Numerical Issues and Remedies
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051002
.
29.
Kang
,
S. W.
, and
Kim
,
Y. Y.
,
2018
, “
Unified Topology and Joint Types Optimization of General Planar Linkage Mechanisms
,”
Struct. Multidiscip. Optim.
,
57
(
5
), pp.
1955
1983
.
30.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
31.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
You do not currently have access to this content.