Commonality, or the use of the same components among products in a product family, has been considered an effective approach to design a product family. By implementing commonality, a firm can reduce the number of distinct components, component inventory, and inventory cost. However, product design may change and product cost may increase due to using common components that may require different interface conditions and be more expensive than the initially considered components. While the benefits and challenges are well recognized, simultaneous optimization of commonality, product family design, and inventory decisions has not been comprehensively studied. In this paper, we present an approach to integrate commonality, product family design, and inventory decisions by incorporating inventory-related costs in the profit formula. In the proposed approach, (1) commonality matrix is defined to assign product demands to components and component costs to products, (2) continuous inventory review policy is used to calculate safety inventory, (3) joint ordering is implemented to calculate inventory-replenishment lot size and cycle inventory, and (4) cycle service level (CSL) and expected number of component shortage per replenishment cycle (ESC) are utilized to calculate inventory-understock costs. The design of three beverage containers is used as an illustrative example to demonstrate the proposed approach, and sensitivity analysis is performed to contrast commonality and product family design of the three beverage containers with and without incorporating inventory decisions.

References

References
1.
Collier
,
D. A.
,
1981
, “
The Measurement and Operating Benefits of Component Part Commonality
,”
Decis. Sci.
,
12
(
1
), pp.
85
96
.
2.
Collier
,
D. A.
,
1982
, “
Aggregate Safety Stock Levels and Component Part Commonality
,”
Manage. Sci.
,
28
(
11
), pp.
1296
1303
.
3.
Baker
,
K. R.
,
Magazine
,
M. J.
, and
Nuttle
,
H. L. W.
,
1986
, “
The Effect of Commonality on Safety Stock in a Simple Inventory Model
,”
Manage. Sci.
,
32
(
8
), pp.
982
988
.
4.
Gerchak
,
Y.
,
Magazine
,
M. J.
, and
Gamble
,
A. B.
,
1988
, “
Component Commonality With Service Level Requirements
,”
Manage. Sci.
,
34
(
6
), pp.
753
760
.
5.
Deza
,
A.
,
Huang
,
K.
,
Liang
,
H.
, and
Wang
,
X. J.
,
2018
, “
On Component Commonality for Periodic Review Assemble-to-Order Systems
,”
Ann. Oper. Res.
,
265
(
1
), pp.
29
46
.
6.
Mohebbi
,
E.
, and
Choobineh
,
F.
,
2005
, “
The Impact of Component Commonality in an Assemble-to-Order Environment Under Supply and Demand Uncertainty
,”
Omega
,
33
(
6
), pp.
472
482
.
7.
Heese
,
H. S.
, and
Swaminathan
,
J. M.
,
2006
, “
Product Line Design With Component Commonality and Cost-Reduction Effort
,”
Manuf. Serv. Oper. Manage.
,
8
(
2
), pp.
206
219
.
8.
Bernstein
,
F.
,
Kök
,
A. G.
, and
Xie
,
L.
,
2011
, “
The Role of Component Commonality in Product Assortment Decisions
,”
Manuf. Serv. Oper. Manage.
,
13
(
2
), pp.
261
270
.
9.
Lee
,
H. L.
,
1993
, “
Design for Supply Chain Management: Concepts and Examples
,”
Perspectives in Operations Management
,
R. K.
Sarin
, ed.,
Kluwer Academic Publishers
,
Boston, MA
, pp.
45
65
.
10.
Zinn
,
W.
, and
Bowersox
,
D. J.
,
1988
, “
Planning Physical Distribution With the Principle of Postponement
,”
J. Bus. Logist.
,
9
(
2
), pp.
117
136
.
11.
Zinn
,
W.
,
1990
, “
Developing Heuristics to Estimate the Impact of Postponement on Safety Stock
,”
Int. J. Logist. Manage.
,
1
(
2
), pp.
11
16
.
12.
Lee
,
H. L.
,
Billington
,
C.
, and
Carter
,
B.
,
1993
, “
Hewlett-Packard Gains Control of Inventory and Service Through Design for Localization
,”
Interfaces
,
23
(
4
), pp.
1
11
.
13.
Lee
,
H. L.
, and
Sasser
,
M. M.
,
1995
, “
Product Universality and Design for Supply Chain Management
,”
Prod. Plann. Control: Manage. Oper.
,
6
(
3
), pp.
270
277
.
14.
Lee
,
H. L.
, and
Tang
,
C. S.
,
1997
, “
Modelling the Costs and Benefits of Delayed Product Differentiation
,”
Manage. Sci.
,
43
(
1
), pp.
40
53
.
15.
Garg
,
A.
, and
Tang
,
C. S.
,
1997
, “
On Postponement Strategies for Product Families With Multiple Points of Differentiation
,”
IIE Trans.
,
29
(
8
), pp.
641
650
.https://link.springer.com/article/10.1023/A:1018565917103
16.
Doğru
,
M. K.
,
Reiman
,
M. I.
, and
Wang
,
Q.
,
2010
, “
A Stochastic Programming Based Inventory Policy for Assemble-to-Order Systems With Application to the W Model
,”
Oper. Res.
,
58
(
4 Pt. 1
), pp.
849
864
.
17.
Albrecht
,
M.
,
2014
, “
Determining Near Optimal Base-Stock Levels in Two-Stage General Inventory Systems
,”
Eur. J. Oper. Res.
,
232
(
2
), pp.
342
349
.
18.
Lu
,
L.
,
Song
,
J.-S.
, and
Zhang
,
H.
,
2015
, “
Optimal and Asymptotically Optimal Policies for Assemble-to-Order N- and W-Systems
,”
Nav. Res. Logist.
,
62
(
8
), pp.
617
645
.
19.
Song
,
J.-S.
, and
Zhao
,
Y.
,
2009
, “
The Value of Component Commonality in a Dynamic Inventory System With Lead Times
,”
Manuf. Serv. Oper. Manage.
,
11
(
3
), pp.
493
508
.
20.
Bernstein
,
F.
,
DeCroix
,
G. A.
, and
Wang
,
Y.
,
2011
, “
The Impact of Demand Aggregation Through Delayed Component Allocation in an Assemble-to-Order System
,”
Manage. Sci.
,
57
(
6
), pp.
1154
1171
.
21.
Gershenson
,
J. K.
, and
Prasad
,
G. J.
,
1997
, “
Modularity in Product Design for Manufacturing
,”
Int. J. Agile Manuf.
,
1
(
1
), pp.
99
109
.
22.
Gershenson
,
J. K.
,
Prasad
,
G. J.
, and
Allamneni
,
S.
,
1999
, “
Modular Product Design: A Life-Cycle View
,”
J. Integr. Des. Process Sci.
,
3
(
4
), pp.
13
26
.https://content.iospress.com/articles/journal-of-integrated-design-and-process-science/jid3-4-02
23.
Gershenson
,
K.
,
Prasad
,
G. J.
, and
Zhang
,
Y.
,
2003
, “
Product Modularity: Definitions and Benefits
,”
J. Eng. Des.
,
14
(
3
), pp.
295
313
.
24.
Gershenson
,
K.
,
Prasad
,
G. J.
, and
Zhang
,
Y.
,
2004
, “
Product Modularity: Measures and Design Methods
,”
J. Eng. Des.
,
15
(
1
), pp.
33
51
.
25.
Simpson
,
T. W.
,
Siddique
,
Z.
, and
Jiao
,
J.
,
2006
,
Product Platform and Product Family Design: Methods and Applications
,
Springer
,
New York
.
26.
Simpson
,
T. W.
,
Jiao
,
J.
,
Siddique
,
Z.
, and
Hölttä-Otto
,
K.
,
2014
,
Advances in Product Family and Product Platform Design: Methods & Applications
,
Springer
,
New York
.
27.
Simpson
,
T. W.
,
2004
, “
Product Platform Design and Customization: Status and Promise
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
18
(
1
), pp.
3
20
.https://doi.org/10.1017/S0890060404040028
28.
Jiao
,
J.
,
Simpson
,
T. W.
, and
Siddique
,
Z.
,
2007
, “
Product Family Design and Platform-Based Product Development: A State-of-The-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
.
29.
Otto
,
K.
,
Hölttä-Otto
,
K.
,
Simpson
,
T. W.
,
Krause
,
D.
,
Ripperda
,
S.
, and
Moon
,
S. K.
,
2016
, “
Global Views on Modular Design Research: Linking Alternative Methods to Support Modular Product Family Concept Development
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071101
.
30.
Kim
,
G.
,
Kwon
,
Y.
,
Suh
,
E. S.
, and
Ahn
,
J.
,
2016
, “
Analysis of Architectural Complexity for Product Family and Platform
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071401
.
31.
Ripperda
,
S.
, and
Krause
,
D.
,
2017
, “
Cost Effects of Modular Product Family Structures: Methods and Quantification of Impacts to Support Decision Making
,”
ASME J. Mech. Des.
,
139
(
2
), p.
021103
.
32.
Chowdhury
,
S.
,
Messac
,
A.
, and
Khire
,
R. A.
,
2011
, “
Comprehensive Product Platform Planning (CP3) Framework
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101004
.
33.
Moon
,
S. K.
, and
McAdams
,
D. A.
,
2012
, “
A Market-Based Design Strategy for a Universal Product Family
,”
ASME J. Mech. Des.
,
134
(
11
), p.
111007
.
34.
Liu
,
Y.
,
Lim
,
S. C. J.
, and
Lee
,
W. B.
,
2013
, “
Product Family Design Through Ontology-Based Faceted Component Analysis, Selection, and Optimization
,”
ASME J. Mech. Des.
,
135
(
8
), p.
081007
.
35.
Cao
,
Y.
,
Luo
,
X. G.
,
Kwong
,
C. K.
,
Tang
,
J. F.
, and
Zhou
,
W.
,
2012
, “
Joint Optimization of Product Family Design and Supplier Selection Under Multinomial Logit Consumer Choice Rule
,”
Concurrent Eng.: Res. Appl.
,
20
(
4
), pp.
335
347
.
36.
Moon
,
S. K.
,
Park
,
K. J.
, and
Simpson
,
T. W.
,
2014
, “
Platform Design Variable Identification for a Product Family Using Multi-Objective Particle Swarm Optimization
,”
Res. Eng. Des.
,
25
(
2
), pp.
95
108
.
37.
Eichstetter
,
M.
,
Müller
,
S.
, and
Zimmermann
,
M.
,
2015
, “
Product Family Design With Solution Spaces
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121401
.
38.
Wacker
,
J. G.
, and
Trelevan
,
M.
,
1986
, “
Component Part Standardization: An Analysis of Commonality Sources and Indices
,”
J. Oper. Manage.
,
6
(
2
), pp.
219
244
.
39.
Jiao
,
J.
, and
Tseng
,
M. M.
,
2000
, “
Understanding Product Family for Mass Customization by Developing Commonality Indices
,”
J. Eng. Des.
,
11
(
3
), pp.
225
243
.
40.
Kota
,
S.
,
Sethuraman
,
K.
, and
Miller
,
R.
,
2000
, “
A Metric for Evaluating Design Commonality in Product Families
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
403
410
.
41.
Thevenot
,
H. J.
, and
Simpson
,
T. W.
,
2007
, “
A Comprehensive Metric for Evaluating Component Commonality in a Product Family
,”
J. Eng. Des.
,
18
(
6
), pp.
577
598
.
42.
Thevenot
,
H. J.
,
Alizon
,
F.
,
Simpson
,
T. W.
, and
Shooter
,
S. B.
,
2007
, “
An Index-Based Method to Manage the Tradeoff Between Diversity and Commonality During Product Family Design
,”
Concurrent Eng.: Res. Appl.
,
15
(
2
), pp.
127
139
.
43.
Alizon
,
F.
,
Shooter
,
S. B.
, and
Simpson
,
T. W.
,
2009
, “
Assessing and Improving Commonality and Diversity Within a Product Family
,”
Res. Eng. Des.
,
20
(
4
), pp.
241
253
.
44.
Martin
,
M. V.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
,
13
(
4
), pp.
213
235
.
45.
Sered
,
Y.
, and
Reich
,
Y.
,
2006
, “
Standardization and Modularization Driven by Minimizing Overall Process Effort
,”
Comput.-Aided Des.
,
38
(
5
), pp.
405
416
.
46.
Thevenot
,
H. J.
, and
Simpson
,
T. W.
,
2006
, “
Commonality Indices for Product Family Design: A Detailed Comparison
,”
J. Eng. Des.
,
17
(
2
)pp. 2006, pp.
99
119
.
47.
Simpson
,
T. W.
,
Bobuk
,
A.
,
Slingerland
,
L. A.
,
Brennan
,
S.
,
Logan
,
D.
, and
Reichard
,
K.
,
2012
, “
From User Requirements to Commonality Specifications: An Integrated Approach to Product Family Design
,”
Res. Eng. Des.
,
23
(
2
), pp.
141
153
.
48.
Jung
,
S.
, and
Simpson
,
T. W.
,
2016
, “
An Integrated Approach to Product Family Redesign Using Commonality and Variety Metrics
,”
Res. Eng. Des.
,
27
(
4
), pp.
391
412
.
49.
Lee
,
H. L.
, and
Billington
,
C.
,
1992
, “
Managing Supply Chain Inventory: Pitfalls and Opportunities
,”
Sloan Manage. Rev.
,
33
(
3
), pp.
65
73
.https://sloanreview.mit.edu/article/managing-supply-chain-inventory-pitfalls-and-opportunities/
50.
Fixson
,
S. K.
,
2005
, “
Product Architecture Assessment: A Tool to Link Product, Process, and Supply Chain Design Decisions
,”
J. Oper. Manage.
,
23
(
3–4
), pp.
345
369
.
51.
Ülkü
,
S.
, and
Schmidt
,
G. M.
,
2011
, “
Matching Product Architecture and Supply Chain Configuration
,”
Prod. Oper. Manage.
,
20
(
1
), pp.
16
31
.
52.
Chiu
,
M.-C.
, and
Okudan
,
G.
,
2011
, “
An Integrative Methodology for Product and Supply Chain Design Decisions at the Product Design Stage
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021008
.
53.
Chiu
,
M.-C.
, and
Okudan
,
G. E.
,
2014
, “
An Investigation on the Impact of Product Modularity Level on Supply Chain Performance Metrics: An Industrial Case Study
,”
J. Intell. Manuf.
,
25
(
1
), pp.
129
145
.
54.
Chung
,
W.-H.
,
Kremer
,
G. E. O.
, and
Wysk
,
R. A.
,
2014
, “
A Modular Design Approach to Improve Product Life Cycle Performance Based on the Optimization of a Closed-Loop Supply Chain
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021001
.
55.
Kremer
,
G. E. O.
,
Ma
,
J.
,
Chiu
,
M.-C.
, and
Lin
,
T.-K.
,
2013
, “
Product Modularity and Implications for the Reverse Supply Chain
,”
Supply Chain Forum: Int. J.
,
14
(
2
), pp.
54
69
.
56.
Chung
,
W.-H.
,
Okudan Kremer
,
G. E.
, and
Wysk
,
R. A.
,
2014
, “
Life Cycle Implications of Product Modular Architectures in Closed Loop Supply Chain
,”
Int. J. Adv. Manuf. Technol.
,
70
(
9–12
), pp.
2013
2028
.
57.
Das
,
K.
, and
Rao Posinasetti
,
N.
,
2015
, “
Addressing Environmental Concerns in Closed Loop Supply Chain Design and Planning
,”
Int. J. Prod. Econ.
,
163
, pp.
34
47
.
58.
Fujita
,
K.
,
2014
, “
Global Product Family Design: Simultaneous Optimal Design of Module Commonalization and Supply Chain Configuration
,”
Advances in Product Family and Product Platform Design: Methods & Applications
,
T. W.
Simpson
,
J.
Jiao
,
Z.
Siddique
, and
K.
Hölttä-Otto
, eds.,
Springer
,
New York
.
59.
Huang
,
G. Q.
,
Zhang
,
X. Y.
, and
Lo
,
V. H. Y.
,
2007
, “
Integrated Configuration of Platform Products and Supply Chains for Mass Customization: A Game-Theoretic Approach
,”
IEEE Trans. Eng. Manage.
,
54
(
1
), pp.
156
171
.
60.
Zhang
,
X.
, and
Huang
,
G. Q.
,
2010
, “
Game-Theoretic Approach to Simultaneous Configuration of Platform Products and Supply Chains With One Manufacturing Firm and Multiple Cooperative Suppliers
,”
Int. J. Prod. Econ.
,
124
(
1
), pp.
121
136
.
61.
Thonemann
,
U. W.
, and
Brandeau
,
M. L.
,
2000
, “
Optimal Commonality in Component Design
,”
Oper. Res.
,
48
(
1
), pp.
1
19
.
62.
Takai
,
S.
, and
Sengupta
,
S.
,
2017
, “
An Approach to Evaluate the Profitability of Component Commonality
,”
ASME J. Mech. Des.
,
139
(
7
), p.
074501
.
63.
Chopra
,
S.
, and
Meindl
,
P.
,
2015
,
Supply Chain Management: Strategy, Planning, and Operation
,
6th ed.
,
Prentice Hall
,
Boston, MA
.
64.
Qin
,
L.
,
2017
, “How Many Cups Does Starbucks Use in A Day?,” accessed Oct. 26, 2017, https://www.leozqin.me/leo-does-the-math-how-many-cups-does-starbucks-use-in-a-day/
You do not currently have access to this content.