In a multireservoir system, ensuring adequate water availability while managing conflicting goals is critical to making the social–ecological system sustainable in the presence of considerable uncertainty. The priorities of multiple user groups and availability of the water resource vary with time, weather, and other factors. Uncertainties such as variations in precipitation can intensify the discrepancies between water supply and water demand. To reduce such discrepancies, we seek to satisfice conflicting goals, considering typical uncertainties. We observe that models are incomplete and inaccurate, which calls into question using a single point solution and suggests the need for solutions, which are robust to uncertainties. So, we explore satisficing solutions that are relatively insensitive to uncertainties, by incorporating different design preferences, identifying sensitive segments, and improving the design accordingly. In this article, we present an example of the exploration of the solution space to enhance sustainability in multidisciplinary systems, when goals conflict, preferences are evolving, and uncertainties add complexity, which can be applied in mechanical design. In this paper, we focus on the method rather than the results.

References

References
1.
Reddy
,
M. J.
, and
Kumar
,
D. N.
,
2007
, “
Multiobjective Differential Evolution With Application to Reservoir System Optimization
,”
J. Comput. Civ. Eng.
,
21
(
2
), pp.
136
146
.
2.
Rani
,
D.
, and
Moreira
,
M. M.
,
2010
, “
Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation
,”
Water Resour. Manage.
,
24
(
6
), pp.
1107
1138
.
3.
Wurbs
,
R. A.
,
1991
,
Optimization of Multiple-Purpose Reservoir Systems Operations: A Review of Modeling and Analysis Approaches
,
Hydrologic Engineering Center
,
Davis, CA
.
4.
Crawley
,
P.
, and
Dandy
,
G.
,
1993
, “
A Headworks Optimisation Model Incorporating a Graphical User Interface
,”
Watercomp 93: Second Australasian Conference on Computing for the Water Industry Today and Tomorrow
,
Melbourne, Australia
,
Mar. 30–Apr. 1
, pp.
319
324
.
5.
Loucks
,
D. P.
,
2000
, “
Sustainable Water Resources Management
,”
Water Int.
,
25
(
1
), pp.
3
10
.
6.
Dahe
,
P.
, and
Srivastava
,
D.
,
2002
, “
Multireservoir Multiyield Model With Allowable Deficit in Annual Yield
,”
J. Water Resour. Plann. Manage.
,
128
(
6
), pp.
406
414
.
7.
Needham
,
J. T.
,
Watkins
,
D. W.
, Jr.
,
Lund
,
J. R.
, and
Nanda
,
S.
,
2000
, “
Linear Programming for Flood Control in the Iowa and Des Moines Rivers
,”
J. Water Resour. Plann. Manage.
,
126
(
3
), pp.
118
127
.
8.
Vedula
,
S.
,
Mujumdar
,
P.
, and
Sekhar
,
G. C.
,
2005
, “
Conjunctive Use Modeling for Multicrop Irrigation
,”
Agric. Water Manage.
,
73
(
3
), pp.
193
221
.
9.
Tu
,
M.-Y.
,
Hsu
,
N.-S.
, and
Yeh
,
W. W.-G.
,
2003
, “
Optimization of Reservoir Management and Operation With Hedging Rules
,”
J. Water Resour. Plann. Manage.
,
129
(
2
), pp.
86
97
.
10.
Randall
,
D.
,
Cleland
,
L.
,
Kuehne
,
C. S.
,
Link
,
G. W. B.
, and
Sheer
,
D. P.
,
1997
, “
Water Supply Planning Simulation Model Using Mixed-Integer Linear Programming 'Engine
,”
J. Water Resour. Plann. Manage.
,
123
(
2
), pp.
116
124
.
11.
Loucks
,
D. P.
,
Stedinger
,
J. R.
, and
Haith
,
D. A.
,
1981
,
Water Resource Systems Planning and Analysis
,
Prentice Hall
,
Englewood Cliffs, NJ
.
12.
Sreenivasan
,
K.
, and
Vedula
,
S.
,
1996
, “
Reservoir Operation for Hydropower Optimization: A Chance-Constrained Approach
,”
Sadhana
,
21
(
4
), pp.
503
510
.
13.
Van Ackooij
,
W.
,
Henrion
,
R.
,
Möller
,
A.
, and
Zorgati
,
R.
,
2014
, “
Joint Chance Constrained Programming for Hydro Reservoir Management
,”
Optim. Eng.
,
15
(
2
), pp.
509
531
.https://link.springer.com/article/10.1007/s11081-013-9236-4
14.
Ford
,
L.
, and
Fulkerson
,
D. R.
,
1962
,
Flows in Networks
,
Princeton University Press
,
Princeton, NJ
.
15.
Kuczera
,
G.
, and
Diment
,
G.
,
1988
, “
General Water Supply System Simulation Model: WASP
,”
J. Water Resour. Plann. Manage.
,
114
(
4
), pp.
365
382
.
16.
Hsu
,
N.-S.
, and
Cheng
,
K.-W.
,
2002
, “
Network Flow Optimization Model for Basin-Scale Water Supply Planning
,”
J. Water Resour. Plann. Manage.
,
128
(
2
), pp.
102
112
.
17.
Ponnambalam
,
K.
,
Vannelli
,
A.
, and
Unny
,
T.
,
1989
, “
An Application of Karmarkar's Interior-Point Linear Programming Algorithm for Multi-Reservoir Operations Optimization
,”
Stochastic Hydrol. Hydraul.
,
3
(
1
), pp.
17
29
.
18.
Seifi
,
A.
, and
Hipel
,
K. W.
,
2001
, “
Interior-Point Method for Reservoir Operation With Stochastic Inflows
,”
J. Water Resour. Plann. Manage.
,
127
(
1
), pp.
48
57
.
19.
Mousavi
,
S. J.
,
Moghaddam
,
K. S.
, and
Seifi
,
A.
,
2004
, “
Application of an Interior-Point Algorithm for Optimization of a Large-Scale Reservoir System
,”
Water Resour. Manage.
,
18
(
6
), pp.
519
540
.
20.
Zhou
,
H.-C.
,
Zhang
,
G.-H.
, and
Wang
,
G.-L.
,
2007
, “
Multi-Objective Decision Making Approach Based on Entropy Weights for Reservoir Flood Control Operation
,”
J. Hydraul. Eng.
,
38
(
1
), pp.
100
106
.
21.
Teegavarapu
,
R. S.
, and
Simonovic
,
S. P.
,
2000
, “
Short-Term Operation Model for Coupled Hydropower Reservoirs
,”
J. Water Resour. Plann. Manage.
,
126
(
2
), pp.
98
106
.
22.
Barros
,
M. T.
,
Tsai
,
F. T.
,
Yang
,
S.-L.
,
Lopes
,
J. E.
, and
Yeh
,
W. W.
,
2003
, “
Optimization of Large-Scale Hydropower System Operations
,”
J. Water Resour. Plann. Manage.
,
129
(
3
), pp.
178
188
.
23.
Yakowitz
,
S.
,
1982
, “
Dynamic Programming Applications in Water Resources
,”
Water Resour. Res.
,
18
(
4
), pp.
673
696
.https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR018i004p00673
24.
Nandalal
,
K.
, and
Bogardi
,
J. J.
,
2007
,
Dynamic Programming Based Operation of Reservoirs: Applicability and Limits
,
Cambridge University Press
,
Cambridge, UK
.
25.
Bellman
,
R.
, and
Dreyfus
,
S.
,
1962
,
Computational Aspects of Dynamic Programming
, Princeton University Press,
Princeton, NJ
.
26.
Bellman
,
R.
,
1957
,
Dynamic Programming
,
Princeton University Press
,
Princeton, NJ
.
27.
Ignizio
,
J. P.
,
1982
,
Linear Programming in Single and Multi-Objective Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
28.
Ignizio
,
J. P.
,
1983
, “
Generalized Goal Programming an Overview
,”
Comput. Oper. Res.
,
10
(
4
), pp.
277
289
.
29.
Ignizio
,
J.
,
1985
,
Introduction to Linear Goal Programming, Quantitative Applications in the Social Sciences
,
J. L.
Sullivan
and
R. G.
Niemi
, eds.,
Sage University Papers
,
Beverly Hills, CA
.
30.
Clayton
,
E. R.
,
Weber
,
W. E.
, and
Taylor
,
B. W.
, III
,
1982
, “
A Goal Programming Approach to the Optimization of Multi Response Simulation Models
,”
IIE Trans.
,
14
(
4
), pp.
282
287
.https://www.tandfonline.com/doi/abs/10.1080/05695558208975241
31.
Loganathan
,
G.
, and
Bhattacharya
,
D.
,
1990
, “
Goal-Programming Techniques for Optimal Reservoir Operations
,”
J. Water Resour. Plann. Manage.
,
116
(
6
), pp.
820
838
.
32.
Eschenbach
,
E. A.
,
Magee
,
T.
,
Zagona
,
E.
,
Goranflo
,
M.
, and
Shane
,
R.
,
2001
, “
Goal Programming Decision Support System for Multiobjective Operation of Reservoir Systems
,”
J. Water Resour. Plann. Manage.
,
127
(
2
), pp.
108
120
.
33.
Changchit
,
C.
, and
Terrell
,
M.
,
1993
, “
A Multiobjective Reservoir Operation Model With Stochastic Inflows
,”
Comput. Ind. Eng.
,
24
(
2
), pp.
303
313
.
34.
Box
,
G. E.
, and
Draper
,
N. R.
,
1987
,
Empirical Model-Building and Response Surfaces
,
Wiley
,
New York
.
35.
Simon
,
H. A.
, and
Kadane
,
J. B.
,
1975
, “
Optimal Problem-Solving Search: All-or-None Solutions
,”
Artif. Intell.
,
6
(
3
), pp.
235
247
.
36.
Triantaphyllou
,
E.
, and
Sánchez
,
A.
,
1997
, “
A Sensitivity Analysis Approach for Some Deterministic Multi‐Criteria Decision‐Making Methods
,”
Decis. Sci.
,
28
(
1
), pp.
151
194
.
37.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B. A.
,
1993
, “
The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
Structural Optimization: Status and Promise
, M. P. Kamat, ed., American Institute of Aeronautics and Astronautics, Washington, DC, pp.
247
286
.
38.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Phuoc
,
H.
,
1981
, “
An Optimization Method for the Design of Large, Highly Constrained Complex Systems
,”
Eng. Optim.
,
5
(
3
), pp.
179
197
.
39.
Poff
,
N. L.
,
Brown
,
C. M.
,
Grantham
,
T. E.
,
Matthews
,
J. H.
,
Palmer
,
M. A.
,
Spence
,
C. M.
,
Wilby
,
R. L.
,
Haasnoot
,
M.
,
Mendoza
,
G. F.
, and
Dominique
,
K. C.
,
2016
, “
Sustainable Water Management Under Future Uncertainty With Eco-Engineering Decision Scaling
,”
Nat. Clim. Change
,
6
(
1
), p.
25
.
40.
Xue
,
X.
,
Zhang
,
K.
,
Hong
,
Y.
,
Gourley
,
J. J.
,
Kellogg
,
W.
,
McPherson
,
R. A.
,
Wan
,
Z.
, and
Austin
,
B. N.
,
2015
, “
New Multisite Cascading Calibration Approach for Hydrological Models: Case Study in the Red River Basin Using the VIC Model
,”
J. Hydrol. Eng.
,
21
(
2
), p.
05015019
.https://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001282
41.
McPherson
,
R.
,
2016
, “
Impacts of Climate Change on Flows in the Red River Basin
,” Final Report to the South Central Climate Science Center, Norman, OK, Report No. G13AC00386, CFDA #15820.
42.
Fok
,
K. L.
, and
Chopra
,
A. K.
,
1986
, “Earthquake Analysis of Arch Dams Including Dam–Water Interaction, Reservoir Boundary Absorption and Foundation Flexibility,”
Earthquake Eng. Struct. Dyn.
,
14
(
2
), pp.
155
184
.https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.4290140202
43.
Sabeghi
,
M.
,
Shukla
,
R.
,
Allen
,
J. K.
, and
Mistree
,
F.
, “
Solution Space Exploration of the Process Design for Continuous Casting of Steel
,”
ASME
Paper No. DETC2016-59399.
You do not currently have access to this content.