Accurately predicting the reliability of a physical system under aleatory uncertainty requires a very large number of physical output testing. Alternatively, a simulation-based method can be used, but it would involve epistemic uncertainties due to imperfections in input distribution models, simulation models, and surrogate models, as well as a limited number of output testing due to cost. Thus, the estimated output distributions and their corresponding reliabilities would become uncertain. One way to treat epistemic uncertainty is to use a hierarchical Bayesian approach; however, this could result in an overly conservative reliability by integrating possible candidates of input distribution. In this paper, a new confidence-based reliability assessment method that reduces unnecessary conservativeness is developed. The epistemic uncertainty induced by a limited number of input data is treated by approximating an input distribution model using a bootstrap method. Two engineering examples and one mathematical example are used to demonstrate that the proposed method (1) provides less conservative reliability than the hierarchical Bayesian analysis, yet (2) predicts the reliability of a physical system that satisfies the user-specified target confidence level, and (3) shows convergence behavior of reliability estimation as numbers of input and output test data increase.

References

References
1.
Klir
,
G. J.
, and
Folger
,
T. A.
,
1988
,
Fuzzy Sets, Uncertainty, and Information
,
Prentice Hall
,
Upper Saddle River, NJ
.
2.
Park
,
C. Y.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2014
, “
How Coupon and Element Tests Reduce Conservativeness in Element Failure Prediction
,”
Reliab. Eng. Syst. Saf.
,
123
, pp.
123
136
.
3.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
,
2005
, “
Reliability Estimation and Design With Insufficient Data Based on Possibility Theory
,”
AIAA J.
,
48
(
8
), pp.
1696
1705
.https://arc.aiaa.org/doi/10.2514/1.12044
4.
Du
,
L.
, and
Choi
,
K. K.
,
2008
, “
An Inverse Analysis Method for Design Optimization With Both Statistical and Fuzzy Uncertainties
,”
Struct. Multidiscip. Optim.
,
37
(
2
), pp.
107
119
.
5.
Gunawan
,
S.
, and
Papalambros
,
P. Y.
,
2006
, “
A Bayesian Approach to Reliability-Based Optimization With Incomplete Information
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
909
918
.
6.
Youn
,
B. D.
, and
Wang
,
P.
,
2008
, “
Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method
,”
Struct. Multidiscip. Optim.
,
36
(
2
), pp.
107
123
.
7.
Wang
,
P.
,
Youn
,
B. D.
,
Xi
,
Z.
, and
Kloess
,
A.
,
2009
, “
Bayesian Reliability Analysis With Evolving, Insufficient, and Subjective Data Sets
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111008
.
8.
Cho
,
H.
,
Choi
,
K. K.
,
Gaul
,
N.
,
Lee
,
I.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2016
, “
Conservative Reliability-Based Design Optimization Method With Insufficient Input Data
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1609
1630
.
9.
Picheny
,
V.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2010
, “
Application of Bootstrap Method in Conservative Estimation of Reliability With Limited Samples
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
205
217
.
10.
Noh
,
Y.
,
Choi
,
K. K.
,
Lee
,
I.
, and
Gorsich
,
D.
,
2011
, “
Reliability-Based Design Optimization With Confidence Level for Non-Gaussian Distributions Using Bootstrap Method
,”
ASME J. Mech. Des.
,
133
(
9
), p.
091001
.
11.
Zaman
,
K.
, and
Mahadevan
,
S.
,
2017
, “
Reliability-Based Design Optimization of Multidisciplinary System Under Aleatory and Epistemic Uncertainty
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
681
699
.
12.
Jiang
,
Z.
,
Chen
,
W.
,
Fu
,
Y.
, and
Yang
,
R. J.
,
2013
, “
Reliability-Based Design Optimization With Model Bias and Data Uncertainty
,”
SAE Int. J. Mater. Manuf.
,
6
(
3
), pp.
502
516
.
13.
Pan
,
H.
,
Xi
,
Z.
, and
Yang
,
R. J.
,
2016
, “
Model Uncertainty Approximation Using a Copula-Based Approach for Reliability Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1543
1556
.
14.
Moon
,
M. Y.
,
Choi
,
K. K.
,
Cho
,
H.
,
Gaul
,
N.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2017
, “
Reliability-Based Design Optimization Using Confidence-Based Model Validation for Insufficient Experimental Data
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031404
.
15.
Moon
,
M. Y.
,
Cho
,
H.
,
Choi
,
K. K.
,
Gaul
,
N.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2018
, “
Confidence-Based Reliability Assessment Considering Limited Numbers of Both Input and Output Test Data
,”
Struct. Multidiscip. Optim.
,
57
(
5
), pp.
2027
2043
.
16.
Efron
,
B.
, and
Tibshirani
,
R. J.
,
1994
,
An Introduction to the Bootstrap
,
CRC Press
,
Boca Raton, FL
.
17.
Silverman
,
B. W.
,
1986
,
Density Estimation for Statistics and Data Analysis
,
Chapman & Hall
,
London
.
18.
Lee
,
I.
,
Choi
,
K. K.
, and
Zhao
,
L.
,
2011
, “
Sampling-Based RBDO Using the Dynamic Kriging Method and Stochastic Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
44
(
3
), pp.
299
317
.
19.
Lee
,
I.
,
Choi
,
K. K.
,
Noh
,
Y.
,
Zhao
,
L.
, and
Gorsich
,
D.
,
2011
, “
Sampling-Based Stochastic Sensitivity Analysis Using Score Functions for RBDO Problems With Correlated Random Variables
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021003
.
20.
Gu
,
L.
,
Yang
,
R. J.
,
Tho
,
C. H.
,
Makowskit
,
M.
,
Faruquet
,
O.
, and
Li
,
Y.
,
2001
, “
Optimization and Robustness for Crashworthiness of Side Impact
,”
Int. J. Veh. Des.
,
26
(
4
), pp.
348
360
.
21.
Youn
,
B. D.
,
Choi
,
K. K.
,
Yang
,
R. J.
, and
Gu
,
L.
,
2004
, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscip. Optim.
,
26
(
3–4
), pp.
272
283
.
22.
Rao
,
S. S.
, and
Rao
,
S. S.
,
2009
,
Engineering Optimization: Theory and Practice
,
Wiley
,
Hoboken, NJ
.
23.
Zhao
,
L.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2011
, “
Metamodeling Method Using Dynamic Kriging for Design Optimization
,”
AIAA J.
,
49
(
9
), pp.
2034
2046
.
24.
RAMDO Solutions,
2018
, “
RAMDO Software
,” RAMDO Solutions, Iowa City, IA,
25.
Volpi
,
S.
,
Diez
,
M.
,
Gaul
,
N. J.
,
Song
,
H.
,
Iemma
,
U.
,
Choi
,
K. K.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2015
, “
Development and Validation of a Dynamic Metamodel Based on Stochastic Radial Basis Functions and Uncertainty Quantification
,”
Struct. Multidiscip. Optim.
,
51
(
2
), pp.
347
368
.
26.
Sen
,
O.
,
Davis
,
S.
,
Jacobs
,
G.
, and
Udaykumar
,
H. S.
,
2015
, “
Evaluation of Convergence Behavior of Metamodeling Techniques for Bridging Scales in Multi-Scale Multimaterial Simulation
,”
J. Comput. Phys.
,
294
, pp.
585
604
.
27.
Lee
,
I.
,
Noh
,
Y.
, and
Yoo
,
D.
,
2012
, “
A Novel Second-Order Reliability Method (SORM) Using Noncentral or Generalized Chi-Squared Distributions
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100912
.
You do not currently have access to this content.