Though little research has been done in the field of over-design as a product development strategy, an over-design approach can help products avoid the issue of premature obsolescence. This paper compares over-design to redesign as approaches to address the emergence of future requirements. Net present value (NPV) analyses of several real world applications are examined from the perspective of manufacturers (i.e., defense contractors, automobile, pharmaceutical, and microprocessor manufactures) and customers (i.e., purchases of vehicles, televisions, cell phones, washing machines, and buildings). This analysis is used to determine the conditions under which an over-design approach provides a greater benefit than a redesign approach. Over-design is found to have a higher NPV than redesign when future requirements occur soon after the initial release, discount rates are low, initial research, and development cost or price is high, and when the incremental costs of the future requirements are low.

References

References
1.
Simpson
,
T. W.
,
Jiao
,
J. R.
,
Siddique
,
Z.
, and
Hölttä-Otto
,
K.
,
2014
,
Advances in Product Family and Product Platform Design
,
Springer
,
New York
.
2.
Chowdhury
,
S.
,
Maldonado
,
V.
,
Tong
,
W.
, and
Messac
,
A.
,
2016
, “
New Modular Product-Platform-Planning Approach to Design Macroscale Reconfigurable Unmanned Aerial Vehicles
,”
J. Aircr.
,
53
(2), pp.
1
14
.
3.
Li
,
Z.
,
Pehlken
,
A.
,
Qian
,
H.
, and
Hong
,
Z.
,
2015
, “
A Systematic Adaptable Platform Architecture Design Methodology for Early Product Development
,”
J. Eng. Des.
,
27
(1–3), pp.
1
25
.
4.
Otto
,
K.
,
Hölttä-Otto
,
K.
,
Simpson
,
T. W.
,
Krause
,
D.
,
Ripperda
,
S.
, and
Moon
,
S. K.
,
2016
, “
Global Views on Modular Design Research: Linking Alternative Methods to Support Modular Product Family Concept Development
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071101
.
5.
Lugo-Márquez
,
S.
,
Guarín Grisales
,
Á.
,
Rubio
,
O.
, and
Eder
,
W. E.
,
2015
, “
Modular Redesign Methodology for Improving Plant Layout
,”
J. Eng. Des.
,
27
(1–3), pp.
1
25
.
6.
Sanaei
,
R.
,
Otto
,
K.
,
Hölttä-Otto
,
K.
, and
Luo
,
J.
,
2015
, “
Trade-Off Analysis of System Architecture Modularity Using Design Structure Matrix
,”
ASME
Paper No. DETC2015-46403.
7.
Suh
,
E. S.
,
De Weck
,
O. L.
, and
Chang
,
D.
,
2007
, “
Flexible Product Platforms: Framework and Case Study
,”
Res. Eng. Des.
,
18
(
2
), pp.
67
89
.
8.
Hu
,
J.
, and
Cardin
,
M.-A.
,
2015
, “
Generating Flexibility in the Design of Engineering Systems to Enable Better Sustainability and Lifecycle Performance
,”
Res. Eng. Des.
,
26
(
2
), pp.
121
143
.
9.
Tilstra
,
A. H.
,
Backlund
,
P. B.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2015
, “
Principles for Designing Products With Flexibility for Future Evolution
,”
Int. J. Mass Customisation
,
5
(
1
), pp.
22
54
.
10.
Sullivan
,
E.
,
Tortorice
,
M.
, and
Ferguson
,
S.
,
2010
, “
Using Design Reconfigurability to Mitigate the Effects of Uncontrolled System Variations
,”
AIAA
Paper No. 2010-9185.
11.
Bryan
,
A.
,
Hu
,
S. J.
, and
Koren
,
Y.
,
2013
, “
Assembly System Reconfiguration Planning
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041005
.
12.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
, p.
081010
.
13.
Engel
,
A.
, and
Reich
,
Y.
,
2015
, “
Advancing Architecture Options Theory: Six Industrial Case Studies
,”
Syst. Eng.
,
18
(
4
), pp.
396
414
.
14.
Li
,
Y.
,
Xue
,
D.
, and
Gu
,
P.
,
2008
, “
Design for Product Adaptability
,”
Concurrent Eng.
,
16
(
3
), pp.
221
232
.
15.
Martin
,
M. V.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
,
13
(
4
), pp.
213
235
.
16.
Chen
,
W.
,
Sahai
,
A.
,
Messac
,
A.
, and
Sundararaj
,
G. J.
,
1999
, “
Physical Programming for Robust Design
,”
40th Structures, Structural Dynamics and Materials Conference
, St. Louis, MO, Apr. 12–15, pp. 17–26.https://messac.expressions.syr.edu/wp-content/uploads/2012/05/Messac_1999_SDM_PP.pdf
17.
Saleh
,
J. H.
,
2008
, “
Analysis of Marginal Cost of Durability and Cost per Day: A First Step Towards a Rational Choice of Durability
,”
J. Eng. Des.
,
19
(
1
), pp.
55
74
.
18.
Krishnan
,
V.
, and
Bhattacharya
,
S.
,
2002
, “
Technology Selection and Commitment in New Product Development: The Role of Uncertainty and Design Flexibility
,”
Manage. Sci.
,
48
(
3
), pp.
313
327
.
19.
Jarratt
,
T.
,
Eckert
,
C. M.
,
Caldwell
,
N.
, and
Clarkson
,
P. J.
,
2011
, “
Engineering Change: An Overview and Perspective on the Literature
,”
Res. Eng. Des.
,
22
(
2
), pp.
103
124
.
20.
Bernstein
,
F.
, and
Martínez-de-Albéniz
,
V.
,
2016
, “
Dynamic Product Rotation in the Presence of Strategic Customers
,”
Manage. Sci.
,
63
(7), pp. 2092–2107.
21.
Lobel
,
I.
,
Patel
,
J.
,
Vulcano
,
G.
, and
Zhang
,
J.
,
2015
, “
Optimizing Product Launches in the Presence of Strategic Consumers
,”
Manage. Sci.
,
62
(
6
), pp.
1778
1799
.https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2015.2189?journalCode=mnsc
22.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2001
, “
Change Prediction for Product Redesign
,”
International Conference on Engineering Design
, Glasgow, UK, Aug. 21–23, pp. 557–584.https://www.researchgate.net/publication/42796974_Change_prediction_for_product_redesign
23.
Ahmad
,
N.
,
Wynn
,
D. C.
, and
Clarkson
,
P. J.
,
2013
, “
Change Impact on a Product and Its Redesign Process: A Tool for Knowledge Capture and Reuse
,”
Res. Eng. Des.
,
24
(
3
), pp.
219
244
.
24.
Thevenot
,
H. J.
,
Alizon
,
F.
,
Simpson
,
T. W.
, and
Shooter
,
S. B.
,
2007
, “
An Index-Based Method to Manage the Tradeoff Between Diversity and Commonality During Product Family Design
,”
Concurrent Eng.
,
15
(
2
), pp.
127
139
.
25.
Gu
,
P.
,
Xue
,
D.
, and
Nee
,
A. Y. C.
,
2009
, “
Adaptable Design: Concepts, Methods, and Applications
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
11
), pp.
1367
1387
.
26.
Gu
,
P.
,
Hashemian
,
M.
, and
Nee
,
A.
,
2004
, “
Adaptable Design
,”
CIRP Ann.-Manuf. Technol.
,
53
(
2
), pp.
539
557
.
27.
Jiao
,
J. R.
,
Simpson
,
T. W.
, and
Siddique
,
Z.
,
2007
, “
Product Family Design and Platform-Based Product Development: A State-of-the-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
.
28.
Kota
,
S.
,
Sethuraman
,
K.
, and
Miller
,
R.
,
2000
, “
A Metric for Evaluating Design Commonality in Product Families
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
403
410
.
29.
Egelman
,
C. D.
,
Epple
,
D.
,
Argote
,
L.
, and
Fuchs
,
E. R. H.
,
2016
, “
Learning by Doing in Multiproduct Manufacturing: Variety, Customizations, and Overlapping Product Generations
,”
Manage. Sci.
,
63
(2), pp. 405–423.
30.
Kusiak
,
A.
,
2002
, “
Integrated Product and Process Design: A Modularity Perspective
,”
J. Eng. Des.
,
13
(
3
), pp.
223
231
.
31.
Gershenson
,
J. K.
,
Prasad
,
G. J.
, and
Allamneni
,
S.
,
1999
, “
Modular Product Design: A Life-Cycle View
,”
J. Integr. Des. Process Sci.
,
3
(
4
), pp.
13
26
.https://pdfs.semanticscholar.org/6b6c/fdeeac8cf6029a0500cb7800dffcea791044.pdf
32.
Newcomb
,
P. J.
,
Bras
,
B.
, and
Rosen
,
D. W.
,
1998
, “
Implications of Modularity on Product Design for the Life Cycle
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
483
490
.
33.
Keese
,
D. A.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2009
, “
Product Flexibility Measurement With Enhanced Change Modes and Effects Analysis (CMEA)
,”
Int. J. Mass Customisation
,
3
(
2
), pp.
115
145
.
34.
Gil
,
N.
,
Tommelein
,
I. D.
,
Stout
,
A.
, and
Garrett
,
T.
,
2005
, “
Embodying Product and Process Flexibility to Cope With Challenging Project Deliveries
,”
J. Constr. Eng. Manage.
,
131
(
4
), pp.
439
448
.
35.
Cardin
,
M.-A.
,
2014
, “
Enabling Flexibility in Engineering Systems: A Taxonomy of Procedures and a Design Framework
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011005
.
36.
Ferguson
,
S. M.
, and
Lewis
,
K.
,
2006
, “
Effective Development of Reconfigurable Systems Using Linear State-Feedback Control
,”
AIAA J.
,
44
(
4
), pp.
868
878
.
37.
McKay
,
K.
,
Pinedo
,
M.
, and
Webster
,
S.
,
2002
, “
Practice-Focused Research Issues for Scheduling Systems
,”
Prod. Oper. Manage.
,
11
(
2
), p.
249
.https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1937-5956.2002.tb00494.x
38.
Weaver
,
J.
,
Wood
,
K.
,
Crawford
,
R.
, and
Jensen
,
D.
,
2010
, “
Transformation Design Theory: A Meta-Analogical Framework
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
31012
.
39.
Coman
,
A.
, and
Ronen
,
B.
,
2010
, “
Icarus' Predicament: Managing the Pathologies of Overspecification and Overdesign
,”
Int. J. Project Manage.
,
28
(
3
), pp.
237
244
.
40.
Shmueli
,
O.
,
Pliskin
,
N.
, and
Fink
,
L.
,
2015
, “
Explaining Over-Requirement in Software Development Projects: An Experimental Investigation of Behavioral Effects
,”
Int. J. Project Manage.
,
33
(
2
), pp.
380
394
.
41.
Thompson
,
D. V.
,
Hamilton
,
R. W.
, and
Rust
,
R. T.
,
2005
, “
Feature Fatigue: When Product Capabilities Become Too Much of a Good Thing
,”
J. Mark. Res.
,
42
(
4
), pp.
431
442
.
42.
Rust
,
R. T.
,
Thompson
,
D. V.
, and
Hamilton
,
R. W.
,
2006
, “
Defeating Feature Fatigue
,”
Harvard Bus. Rev.
,
84
(
2
), pp.
37
47
.
43.
Lu
,
Y.
,
den Ouden
,
E.
,
Brombacher
,
A.
,
Geudens
,
W.
, and
Hartmann
,
H.
,
2007
, “
Towards a More Systematic Analysis of Uncertain User–Product Interactions in Product Development: An Enhanced User–Product Interaction Framework
,”
Qual. Reliab. Eng. Int.
,
23
(
1
), pp.
19
29
.
44.
Carpenter
,
G. S.
,
2009
, “
The Effect of Adding Features on Product Attractiveness: The Role of Product Perceived Congruity
,”
Adv. Consum. Res.
,
36
, pp.
651
652
.
45.
Dhar
,
R.
, and
Sherman
,
S. J.
,
1996
, “
The Effect of Common and Unique Features in Consumer Choice
,”
J. Consum. Res.
, (
3
), pp.
193
203
.
46.
Allen
,
J. D.
,
Mattson
,
C. A.
, and
Ferguson
,
S. M.
,
2016
, “
Evaluation of System Evolvability Based on Usable Excess
,”
ASME J. Mech. Des.
,
138
(
9
), p.
091101
.
47.
Ford Motor Co
,
2015
, “
2015 Annual Report
,”
Ford Motor Company
,
Dearborn, MI
.
48.
Toyota Motor Corp.
,
2014
, “
2014 Annual Report
,”
Toyota Motor Corporation
,
Toyota, Japan
.
49.
Honda Motor Company
,
2015
, “
Annual Report 2015
,”
Honda Motor Company
,
Minato, Tokyo, Japan
.
50.
General Motors Co.
,
2015
, “
2015 Annual Report
,”
General Motors Company
,
Detroit, MI
.
51.
Lockheed Martin
,
2015
, “
2015 Annual Report
,”
Lockheed Martin Corporation
,
Bethesda, MD
.
52.
Northrop Grumman
,
2015
, “
2015 Annual Report, the Value of Performance
,”
Northrop Grumman
,
Falls Church, VA
.
53.
Raytheon
,
2015
, “
2015 Annual Report
,”
Raytheon, Waltham
,
MA
.
54.
Boeing
,
2015
, “
2015 Annual Report
,”
The Boeing Company
,
Chicago, IL
.
55.
General Dynamics
,
2015
, “
Annual Report 2015
,”
General Dynamics
,
Falls Church, VA
.
56.
Intel
,
2015
, “
2015 Annual Report
,”
Santa Clara
,
CA
.
57.
Qualcomm
,
2015
, “
Form 10-k
,”
Qualcomm Incorporated, Qualcomm
,
San Diego CA
.
58.
Micron Technology
,
2015
, “
Form 10-k
,”
Micron Technology
,
Micron, Boise, ID
.
59.
Avago
,
2015
, “
Form 10-k
,”
Avago Technologies Limited
,
Avago, Broadcom, San Jose, CA
.
60.
AMD
,
2015
, “
AMD 2015 Annual Report on Form 10-k
,”
AMD
,
Santa Clara, CA
.
61.
AAA
,
2016
, “
Your Driving Costs: How Much Are You Really Paying to Drive?
,”
AAA Associate Communication
,
Heathrow, FL
, accessed Jan. 3, 2018, https://exchange.aaa.com/wp-content/uploads/2017/05/2016-YDC-Brochure.pdf
62.
Himmelberg
,
C.
,
Mayer
,
C.
, and
Sinai
,
T.
,
2005
, “
Assessing High House Prices: Bubbles, Fundamentals and Misperceptions
,”
J. Econ. Perspect.
,
19
(
4
), pp.
67
92
.
63.
Gilead Sciences
,
2015
, “
Gilead Annual Report 2015
,”
Gilead Sciences
,
Foster City, CA
.
64.
Pfizer Inc.
,
2015
, “
2015 Annual Report
,”
Pfizer
,
New York
.
65.
Novartis
,
2015
, “
Annual Report 2015
,”
Novartis
,
Basel, Switzerland
.
66.
McKesson Corp
,
2015
, “
Annual Report 2015
,”
McKesson
,
San Francisco, CA
.
67.
Merck & Co.
,
2015
, “
2015 Merck Annual Report
,”
Merck & Co.
,
Kenilworth, NJ
.
68.
Pepsico
,
2015
, “
2015 Annual Report
,”
Pepsico
,
Herrison, NY
.
69.
Tyson Foodsm, Inc.
,
2015
, “
2015 Annual Report
,”
Tyson Foods
,
Springdale, AR
.
70.
Smithfield Foods, Inc.
,
2015
, “
2015 Annual Report
,”
Smithfield Foods
,
Smithfield, VA
.
71.
Helton
,
J.
,
1997
, “
Uncertainty and Sensitivity Analysis in the Presence of Stochastic and Subjective Uncertainty
,”
J. Stat. Comput. Simul.
,
57
(
1–4
), pp.
3
76
.
72.
Gogu
,
C.
,
Segonds
,
S.
,
Qiu
,
Y.
, and
Bes
,
C.
,
2012
, “
Optimization Based Algorithms for Uncertainty Propagation Through Functions With Multidimensional Output Within Evidence Theory
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100914
.
73.
Lipshitz
,
R.
, and
Strauss
,
O.
,
1997
, “
Coping With Uncertainty: A Naturalistic Decision-Making Analysis
,”
Organ. Behav. Hum. Decis. Process.
,
69
(
2
), pp.
149
163
.
74.
Liu
,
B.
,
2014
,
Uncertainty Theory
,
Springer
,
New York
.
75.
Ma
,
J.
, and
Kim
,
H. M.
,
2016
, “
Product Family Architecture Design With Predictive, Data-Driven Product Family Design Method
,”
Res. Eng. Des.
,
27
(
1
), pp.
5
21
.
You do not currently have access to this content.