Additive manufacturing (AM) is recognized as a disruptive technology that offers significant potentials for innovative design. Prior experimental studies have revealed that novice designers provided with AM knowledge (AMK) resources can generate a higher quantity and quality of solutions in contrast with control groups. However, these studies have adopted coarse-grain evaluation metrics that fall short in correlating AMK with radical or architectural innovation. This deficiency directly affects the capturing, modeling, and delivering AMK so that novel opportunities may be more efficiently utilized in ideation stage. To refine the understanding of AMK's role in stimulating design innovation, an experimental study is conducted with two design projects: (a) a mixer design project, and (b) a hairdryer redesign project. The former of which aims to discover whether AMK inspiration increases the quantity and novelty of working principles (WP) (i.e., radical innovation), while the latter examines the influence of AMK on layout and feature novelty (i.e., architectural innovation). The experimental study indicates that AMK does have a positive influence on architectural innovation while the effects on radical innovation are very limited if the example illustrating the AMK is functionally irrelevant to the design problem. Two strategies are proposed to aid the ideation process in maximizing the possibility of identifying AM potentials to facilitate radical innovation. The limitations of this study and future research plans are discussed.

References

References
1.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
, and
Ahuja
,
B.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.-Manuf. Technol.
,
65
(2), pp.
737
760
.
2.
Yang
,
S.
, and
Zhao
,
Y.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(1–4), pp.
327
342
.
3.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York
.
4.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2017
, “
Design Heuristics for Additive Manufacturing
,”
21st International Conference on Engineering Design
(
ICED17
), Vancouver, BC, Canada, Aug. 21–25, pp. 91–700.https://www.researchgate.net/publication/320372717_Design_Heuristics_for_Additive_Manufacturing
5.
Kumke
,
M.
,
Watschke
,
H.
, and
Vietor
,
T.
,
2016
, “
A New Methodological Framework for Design for Additive Manufacturing
,”
Virtual Phys. Prototyping
,
11
(
1
), pp.
3
19
.
6.
Rosen
,
D. W.
,
2016
, “
A Review of Synthesis Methods for Additive Manufacturing
,”
Virtual Phys. Prototyping
,
11
(4), pp.
1
13
.
7.
Bin Maidin
,
S.
,
Campbell
,
I.
, and
Pei
,
E.
,
2012
, “
Development of a Design Feature Database to Support Design for Additive Manufacturing
,”
Assem. Autom.
,
32
(
3
), pp.
235
244
.
8.
Henderson
,
R. M.
, and
Clark
,
K. B.
,
1990
, “
Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms
,”
Adm. Sci. Q.
,
35
(1), pp.
9
30
.
9.
Ulrich
,
K. T.
,
2003
,
Product Design and Development
,
Tata McGraw-Hill Education
, New York.
10.
Song
,
H. I.
,
Lopez
,
R.
,
Fu
,
K.
, and
Linsey
,
J.
,
2018
, “
Characterizing the Effects of Multiple Analogs and Extraneous Information for Novice Designers in Design-by-Analogy
,”
ASME J. Mech. Des.
,
140
(
3
), p.
031101
.
11.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of ‘Near’ and ‘Far’: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
12.
Dinar
,
M.
, and
Rosen
,
D. W.
,
2017
, “
A Design for Additive Manufacturing Ontology
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021013
.
13.
Hagedorn
,
T.
,
Krishnamurty
,
S.
, and
Grosse
,
I.
,
2018
, “
A Knowledge-Based Method for Innovative Design for Additive Manufacturing Supported by Modular Ontologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021009
.
14.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100904
.
15.
Richter
,
T.
,
Hagen
,
W.
,
Schumacher
,
F.
, and
Vietor
,
T.
,
2018
, “
Exploitation of Potentials of Additive Manufacturing in Ideation Workshops
,”
Fifth International Conference on Design Creativity (ICDC)
, Bath, UK, Jan. 31–Feb. 2, Bath, UK.
16.
Kumke
,
M.
,
Watschke
,
H.
,
Hartogh
,
P.
,
Bavendiek
,
A.-K.
, and
Vietor
,
T.
,
2017
, “
Methods and Tools for Identifying and Leveraging Additive Manufacturing Design Potentials
,”
Int. J. Interact. Des. Manuf.
,
12
(2), pp.
481
493
.
17.
Floriane
,
L.
,
Frédéric
,
S.
,
Gianluca
,
D. A.
, and
Marc
,
L. C.
,
2016
, “
Enriching Design With X Through Tailored Additive Manufacturing Knowledge: A Methodological Proposal
,”
Int. J. Interact. Des. Manuf.
,
11
(2), pp.
279
288
.
18.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121701
.
19.
Rias
,
A.-L.
,
Bouchard
,
C.
,
Segonds
,
F.
,
Vayre
,
B.
, and
Abed
,
S.
,
2017
, “
Design for Additive Manufacturing: Supporting Intrinsic-Motivated Creativity
,”
Emotional Engineering
, Vol. 5,
Springer
, Cham, Switzerland, pp.
99
116
.
20.
Sinha
,
S.
,
Chen
,
H.-E.
,
Meisel
,
N. A.
, and
Miller
,
S. R.
, “
Does Designing for Additive Manufacturing Help Us Be More Creative? An Exploration in Engineering Design Education
,”
ASME
Paper No. DETC2017-68274.
21.
Abdelall
,
E.
,
Frank
,
M. C.
, and
Stone
,
R.
,
2018
, “
A Study of Design Fixation Related to Additive Manufacturing
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041702
.
22.
Barclift
,
M.
,
Simpson
,
T. W.
,
Alessandra Nusiner
,
M.
, and
Miller
,
S.
,
2017
, “
An Investigation Into the Driving Factors of Creativity in Design for Additive Manufacturing
,”
ASME
Paper No. DETC2017-68395.
23.
Yang
,
S.
, and
Zhao
,
F. Y.
,
2016
, “
Conceptual Design for Assembly in the Context of Additive Manufacturing
,”
27th Annual International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 8–10, pp.
1932
1944
.http://sffsymposium.engr.utexas.edu/sites/default/files/2016/156-Yang.pdf
24.
Yao
,
X.
,
Moon
,
S. K.
, and
Bi
,
G.
,
2017
, “
A Hybrid Machine Learning Approach for Additive Manufacturing Design Feature Recommendation
,”
Rapid Prototyping J.
,
6
, pp.
983
997
.
25.
Yang
,
S.
,
Santoro
,
F.
, and
Zhao
,
Y. F.
,
2018
, “
Towards a Numerical Approach of Finding Candidates for Additive Manufacturing-Enabled Part Consolidation
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041701
.
26.
Yang
,
S.
, and
Zhao
,
Y. F.
,
2018
, “
Additive Manufacturing-Enabled Part Count Reduction: A Lifecycle Perspective
,”
ASME J. Mech. Des.
,
140
(
3
), p.
031702
.
27.
Linsey
,
J. S.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K. L.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041003
.
28.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
29.
Tomiyama
,
T.
,
2016
, “
Function Allocation Theory for Creative Design
,”
Procedia CIRP
,
50
, pp.
210
215
.
30.
Suh
,
N. P.
,
1990
,
The Principles of Design
,
Oxford University Press
,
New York
.
31.
Linsey
,
J. S.
, and
Becker
,
B.
,
2011
, “
Effectiveness of Brainwriting Techniques: Comparing Nominal Groups to Real Teams
,”
Design Creativity 2010
,
Springer
, London, pp.
165
171
.
32.
Fu
,
K.
,
Murphy
,
J.
,
Yang
,
M.
,
Otto
,
K.
,
Jensen
,
D.
, and
Wood
,
K.
,
2015
, “
Design-by-Analogy: Experimental Evaluation of a Functional Analogy Search Methodology for Concept Generation Improvement
,”
Res. Eng. Des.
,
26
(
1
), pp.
77
95
.
33.
Moss
,
J.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2007
, “
The Influence of Open Goals on the Acquisition of Problem-Relevant Information
,”
J. Exp. Psychol.: Learn., Memory, Cognition
,
33
(
5
), pp.
876
891
.
34.
Ruscio
,
J.
,
Whitney
,
D. M.
, and
Amabile
,
T. M.
,
1998
, “
Looking Inside the Fishbowl of Creativity: Verbal and Behavioral Predictors of Creative Performance
,”
Creativity Res. J.
,
11
(
3
), pp.
243
263
.
35.
Daly
,
S. R.
,
Seifert
,
C. M.
,
Yilmaz
,
S.
, and
Gonzalez
,
R.
,
2016
, “
Comparing Ideation Techniques for Beginning Designers
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101108
.
36.
Keselman
,
H.
,
Huberty
,
C. J.
,
Lix
,
L. M.
,
Olejnik
,
S.
,
Cribbie
,
R. A.
,
Donahue
,
B.
,
Kowalchuk
,
R. K.
,
Lowman
,
L. L.
,
Petoskey
,
M. D.
, and
Keselman
,
J. C.
,
1998
, “
Statistical Practices of Educational Researchers: An Analysis of Their ANOVA, MANOVA, and ANCOVA Analyses
,”
Rev. Educ. Res.
,
68
(
3
), pp.
350
386
.
37.
Ge
,
Q.
,
Sakhaei
,
A. H.
,
Lee
,
H.
,
Dunn
,
C. K.
,
Fang
,
N. X.
, and
Dunn
,
M. L.
,
2016
, “
Multimaterial 4D Printing With Tailorable Shape Memory Polymers
,”
Sci. Rep.
,
6
, p.
31110
.
38.
Umeda
,
Y.
,
Tomiyama
,
T.
, and
Yoshikawa
,
H.
, “
FBS Modeling: Modeling Scheme of Function for Conceptual Design
,”
Ninth International Workshop on Qualitative Reasoning
, Amsterdam, The Netherlands, May 16–19, pp.
271
278
.
39.
Laliberté
,
T.
,
Birglen
,
L.
, and
Gosselin
,
C.
,
2002
, “
Underactuation in Robotic Grasping Hands
,”
Mach. Intell. Rob. Control
,
4
(
3
), pp.
1
11
.https://www.researchgate.net/profile/Clement_Gosselin/publication/234047273_Underactuation_in_robotic_grasping_hands'/links/5420107e0cf2218008d43916.pdf
40.
Tlegenov
,
Y.
,
Telegenov
,
K.
, and
Shintemirov
,
A.
,
2014
, “
An Open-Source 3D Printed Underactuated Robotic Gripper
,”
Tenth International Conference on Mechatronic and Embedded Systems and Applications
(
MSEA
), Senigallia, Italy, Sept. 10–12, pp.
1
6
.
You do not currently have access to this content.