This paper presents a novel design for a test platform to determine the state of health (SOH) of lithium-ion batteries (LIBs). The SOH is a key parameter of a battery energy storage system and its estimation remains a challenging issue. The batteries that have been tested are 18,650 Li-ion cells as they are the most commonly used batteries on the market. The test platform design is detailed from the building of the charging and discharging circuitry to the software. Data acquired from the testing circuitry are stored and displayed in LabVIEW to obtain the charging and discharging curves. The resulting graphs are compared to the outcome predicted by the battery datasheets, to verify that the platform delivers coherent values. The SOH of the battery is then calculated using a Coulomb counting method in LabVIEW. The batteries will be discharged through various types of resistive circuits, and the differences in the resulting curves will be discussed. A single battery cell will also be tested over 30 cycles and the decrease in the SOH will be clearly identified.

References

References
1.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
.
2.
Buchmann
,
I.
,
2001
,
Batteries in a Portable World
,
Cadex Electronics
,
Richmond, BC, Canada
.
3.
Silva
,
A. F.
,
2016
, “
Lithium-Ion Batteries: Fundamentals and Applications
,”
IEEE Ind. Electron. Mag.
,
10
(1), pp.
58
59
.
4.
Pramanik
,
S.
, and
Anwar
,
S.
,
2016
, “
Electrochemical Model Based Charge Optimization for Lithium-Ion Batteries
,”
J. Power Sources
,
313
, pp.
164
177
.
5.
Eddahech
,
A.
,
Briat
,
O.
, and
Vinassa
,
J.
,
2014
, “
Determination of Lithium-Ion Battery State-of-Health Based on Constant-Voltage Charge Phase
,”
J. Power Sources
,
258
, pp.
218
227
.
6.
Fellner
,
J. P.
,
Loeber
,
G. J.
, and
Sandhu
,
S. S.
,
1999
, “
Testing of Li-Ion 18650 Cells and Characterizing/Predicting Cell Performance
,”
J. Power Sources
,
81–82
, pp.
867
871
.
7.
Keil
,
P.
, and
Jossen
,
A.
,
2016
, “
Charging Protocols for Lithium-Ion Batteries and Their Impact on Cycle Life—An Experimental Study With Different 18650 High Power Cells
,”
J. Energy Storage
,
6
, pp.
125
141
.
8.
Ye
,
Y. H.
,
Shi
,
Y. X.
,
Cai
,
N. S.
,
Lee
,
J. J.
, and
He
,
X. M.
,
1999
, “
Electro-Thermal Modeling and Experimental Validation for Lithium-Ion Battery
,”
J. Power Sources
,
199
, pp.
227
238
.
9.
Fleischhammer
,
M.
,
Waldmann
,
T.
,
Bisle
,
G.
,
Hogg
,
B.-I.
, and
Wohlfahrt-Mehrens
,
M.
,
2015
, “
Interaction of Cyclic Ageing at High-Rate and Low Temperatures and Safety in Lithium-Ion Batteries
,”
J. Power Sources
,
274
, pp.
432
439
.
10.
Berecibar
,
M.
,
Gandiaga
,
I.
,
Villarreal
,
I.
,
Omar
,
N.
,
Van Mierlo
,
J.
, and
Van den Bossche
,
P.
,
2016
, “
Critical Review of State of Health Estimation Methods of Li-Ion Batteries for Real Applications
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
572
587
.
11.
Sepasi
,
S.
,
Ghorbani
,
R.
, and
Liaw
,
B. Y.
,
2015
, “
Inline State of Health Estimation of Lithium-Ion Batteries Using State of Charge Calculation
,”
J. Power Sources
,
299
, pp.
246
254
.
12.
Piller
,
S.
,
Perrin
,
M.
, and
Jossen
,
A.
,
2001
, “
Methods for State-of-Charge Determination and Their Applications
,”
J. Power Sources
,
96
(
1
), pp.
113
120
.
13.
Alzieu
,
C.
,
Smimite
,
J.
, and
Glaize
,
H.
,
1997
, “
Improvement of Intelligent Battery Controller: State-of-Charge Indicator and Associated Functions
,”
J. Power Sources
,
67
(
1–2
), pp.
157
161
.
14.
Hatzell
,
K. B.
,
Sharma
,
A.
, and
Fathy
,
H. K.
,
2012
, “
A Survey of Long-Term Health Modelling, Estimation, and Control of Lithium-Ion Batteries: Challenges and Opportunities
,”
American Control Conference
(
ACC
), Montreal, QC, Canada, June 27–29, pp.
584
591
.
15.
Büschel
,
P.
,
Tröltzsch
,
U.
, and
Kanoun
,
O.
,
2011
, “
Use of Stochastic Methods for Robust Parameter Extraction From Impedance Spectra
,”
Electrochim. Acta
,
56
(
23
), pp.
8069
8077
.
16.
Kozlowski
,
J. D.
,
2003
, “
Electrochemical Cell Prognostics Using Online Impedance Measurements and Model-Based Data Fusion Techniques
,”
IEEE
Aerospace Conference Proceedings
, Big Sky, MT, Mar. 8–15, pp.
3257
3270
.
17.
Dai
,
H. F.
,
Wei
,
X. Z.
, and
Sun
,
Z. C.
,
2009
, “
A New SOH Prediction Concept for the Power Lithium-Ion Battery Used on HEVs
,”
IEEE
Vehicle Power and Propulsion Conference
, Dearborn, MI, Sept. 7–10, pp.
1649
1653
.
18.
Zhang
,
C.
,
Liu
,
J.
, and
Sharkh
,
S. M.
,
2010
, “
Identification of Dynamic Model Parameters for Lithium-Ion Batteries Used in Hybrid Electric Vehicles
,”
High Technol. Lett.
,
16
(1), pp. 6–12.
19.
Feng
,
X.
,
Li
,
J.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
, and
He
,
X.
,
2013
, “
Using Probability Density Function to Evaluate the State of Health of Lithium-Ion Batteries
,”
J. Power Sources
,
232
, pp.
209
218
.
20.
Weng
,
C.
,
Cui
,
Y.
,
Sun
,
J.
, and
Peng
,
H.
,
2013
, “
On-Board State of Health Monitoring of Lithium-Ion Batteries Using Incremental Capacity Analysis With Support Vector Regression
,”
J. Power Sources
,
235
, pp.
36
44
.
21.
Grube
,
R. J.
,
2008
, “
Automotive Battery State-of-Health Monitoring Methods
,”
M.Sc thesis
, Wright State University, Dayton, OH.https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=2034&context=etd_all
22.
Safari
,
M.
,
Morcrette
,
M.
,
Teyssot
,
A.
, and
Delacourt
,
C.
,
2010
, “
Life-Prediction Methods for Lithium-Ion Batteries Derived From a Fatigue Approach
,”
J. Electrochem. Soc.
,
157
(
6
), p.
A713
.
23.
Spotnitz
,
R.
,
2003
, “
Simulation of Capacity Fade in Lithium-Ion Batteries
,”
J. Power Sources
,
113
, pp.
72
80
.
24.
Manyika
,
J.
,
Chui
,
M.
,
Brown
,
B.
,
Bughin
,
J.
,
Dobbs
,
R.
,
Roxburgh
,
C.
, and
Byers
,
A. H.
,
2011
, Big Data: The Next Frontier for Innovation, Competition and Productivity, McKinsey Global Institute, San Francisco, CA.
25.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs
,”
J. Power Sources
,
134
(
2
), pp.
252
261
.
26.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs
,”
J. Power Sources
,
134
(
2
), pp.
262
276
.
27.
Singh
,
P.
,
Kaneria
,
S.
,
Broadhead
,
J.
,
Wang
,
X.
, and
Burdick
,
J.
,
2004
, “
Fuzzy Logic Estimation of SOH of 125Ah VRLA Batteries
,” 26th Annual International Telecommunications Energy Conference (
INTELEC 2004
), Chicago, IL, Sept. 19–23, pp.
524
531
.
28.
Eddahech
,
A.
,
Briat
,
O.
,
Bertrand
,
N.
,
Delétage
,
J.-Y.
, and
Vinassa
,
J.-M.
,
2012
, “
Behaviour and State-of-Health Monitoring of Li-Ion Batteries Using Impedance Spectroscopy Ad Recurrent Neural Networks
,”
Int. J. Electr. Power Energy Syst.
,
42
(
1
), pp.
487
494
.
29.
Prasad
,
G. K.
, and
Rahn
,
C. D.
,
2013
, “
Model Based Identification of Aging Parameters in Lithium Ion Batteries
,”
J. Power Sources
,
232
, pp.
79
85
.
30.
Liu
,
H. W.
,
Xu
,
W. J.
, and
Guo
,
C.
, 2013, “
Study on State of Health Estimation Algorithm for Lithium Power Battery Used on Pure Electric Vehicle
,”
Adv. Mater. Res.
,
608–609
, pp.
1577
1581
.
31.
Sepasi
,
S.
,
Ghorbani
,
R.
, and
Liaw
,
B. Y.
,
2014
, “
Improved Extended Kalman Filter for State of Charge Estimation of Battery Pack
,”
J. Power Sources
,
255
, pp.
368
376
.
32.
Zhang
,
J. L.
, and
Lee
,
J.
,
2011
, “
A Review on Prognostics and Health Monitoring of Li-Ion Battery
,”
J. Power Sources
,
196
(
15
), pp.
6007
6014
.
33.
Schweighofer
,
B.
,
Raab
,
K. M.
, and
Brasseur
,
G.
,
2003
, “
Modeling of High Power Automotive Batteries by the Use of an Automated Test System
,”
IEEE Trans. Instrum. Meas.
,
52
(
4
), pp.
1087
1091
.
34.
Guo
,
Z.
,
Qiu
,
X. P.
,
Hou
,
G. D.
,
Liaw
,
B. Y.
, and
Zhang
,
C. S.
,
2014
, “
State of Health Estimation for Lithium Ion Batteries Based on Charging Curves
,”
J. Power Sources
,
249
, pp.
457
462
.
35.
Raël
,
S.
, and
Hinaje
,
M.
,
2013
, “
Using Electrical Analogy to Describe Mass and Charge Transport in Lithium-Ion Batteries
,”
J. Power Sources
,
222
, pp.
112
122
.
36.
Microchip Technology, 2018, “MCP73833/4: Stand-Alone Linear Li-ion/Li-Polymer Charge Management Controller,” Microchip Technology, Chandler, AZ, accessed Nov. 6 2018, ww1.microchip.com/downloads/en/DeviceDoc/22005a.pdf
37.
Linear Technology, 2018, “LT1308A/LT1308B: High Current, Micropower Single Cell, 600khz DC/DC Converters,” Linear Technology Corp., Milpitas, CA, Nov. 6 2018, http://cds.linear.com/docs/en/datasheet/1308abfb.pdf
38.
Texas Instruments, 2018, “
TS5A3157 10-Ω SPDT Analog Switch
,” Texas Instruments, Dallas, TX, accessed Nov. 6, 2018, http://www.ti.com/lit/ds/symlink/ts5a3157.pdf
39.
National Instruments, 2018, “
LabVIEW 2018
,” National Instruments, Newbury, Berkshire, accessed Nov. 6 2018, http://www.ni.com/labview/whatsnew/f/?cid=Paid_Search-70131000001Rp0HAAS-France-GrowLVAdoption&gclid=CLnpmZyp_ tICFXEW0wodxMAKTg
40.
RS Components, 2018, “
LGC2601016SZ Battery Data Sheet
,” RS Components, Corby, UK, accessed Nov. 6 2018, https://docs-europe.electrocomponents.com/webdocs/001a/0900766b8001a9d6.pdf
You do not currently have access to this content.