Complex engineered systems can carry risk of high failure consequences, and as a result, resilience—the ability to avoid or quickly recover from faults—is desirable. Ideally, resilience should be designed-in as early in the design process as possible so that designers can best leverage the ability to explore the design space. Toward this end, previous work has developed functional modeling languages which represent the functions which must be performed by a system and function-based fault modeling frameworks have been developed to predict the resulting fault propagation behavior of a given functional model. However, little has been done to formally optimize or compare designs based on these predictions, partially because the effects of these models have not been quantified into an objective function to optimize. The work described herein closes this gap by introducing the resilience-informed scenario cost sum (RISCS), a scoring function which integrates with a fault scenario-based simulation, to enable the optimization and evaluation of functional model resilience. The scoring function accomplishes this by quantifying the expected cost of a design's fault response using probability information, and combining this cost with design and operational costs such that it may be parameterized in terms of designer-specified resilient features. The usefulness and limitations of using this approach in a general optimization and concept selection framework are discussed in general, and demonstrated on a monopropellant system design problem. Using RISCS as an objective for optimization, the algorithm selects the set of resilient features which provides the optimal trade-off between design cost and risk. For concept selection, RISCS is used to judge whether resilient concept variants justify their design costs and make direct comparisons between different model structures.

References

References
1.
Forum
,
T. C.
,
2005
, “
Chernobyl's Legacy: Health, Environmental and Socio-Economic Impacts
,” International Atomic Energy Agency, Vienna, Austria, Report No. INIS-XA--903.
2.
Rogers
,
E.
,
1986
, “
Report to the President by the Presidential Commission on the Space Shuttle Challenger Accident
,” National Aeronautics and Space Administration, Washington, DC, Report No. AD-A171402.
3.
Congress
,
U.
,
2010
, “
The Role of BP in the Deepwater Horizon Explosion and Oil Spill
,” House of Representatives Subcommittee on Oversight and Investigations, Committee on Energy and Commerce, Washington, DC, Report No. 111-137.
4.
Seife
,
C.
,
2003
, “
Columbia Disaster Underscores the Risky Nature of Risk Analysis
,”
Science
,
299
(
5609
), pp.
1001
1002
.
5.
US Military Standard,
1980
, “
Procedures for Performing a Failure Mode, Effect, and Criticality Analysis
,” Department of Defense, Washington, DC, Standard No. MIL-STD-1629A.
6.
Vesely
,
W. E.
,
Goldberg
,
F. F.
,
Roberts
,
N. H.
, and
Haasl
,
D.
,
1981
,
Fault Tree Handbook (NUREG-0492)
,
U.S. Nuclear Regulatory Commission
, Washington, DC.
7.
de Kleer
,
J.
, and
Kurien
,
J.
,
2003
, “
Fundamentals of Model-Based Diagnosis
,”
IFAC Proc. Vol.
,
36
(
5
), pp.
25
36
.
8.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2008
, “
A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
ASME J. Mech. Des.
,
130
(
5
), p.
051401
.
9.
Lawrence
,
E.
,
2011
, “
System Safety Analysis and Assessment for Part 23 Airplanes
,” United States Federal Aviation Administration, Washington, DC, Report No.
AC 25.1309-1A
.https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/1019681
10.
Wilkinson
,
P. J.
, and
Kelly
,
T. P.
,
1998
, “
Functional Hazard Analysis for Highly Integrated Aerospace Systems
,”
IEE
Certification of Ground/Air Systems Seminar, London, Feb. 17, p. 4
11.
SAE,
1996
, “Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne System and Equipment,” Society of Automotive Engineers, Warrendale, PA, Standard No. ARP4761.
12.
Ericson
,
C. A.
,
2015
,
Hazard Analysis Techniques for System Safety
,
Wiley
, Hoboken, NJ.
13.
Delange
,
J.
,
Feiler
,
P.
,
Gluch
,
D. P.
, and
Hudak
,
J.
,
2014
, “
AADL Fault Modeling and Analysis Within an ARP4761 Safety Assessment
,” Carnegie Mellon University Software Engineering Institute, Pittsburgh, PA, Report No.
CMU/SEI-2014-TR-020
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=311884.
14.
Dowries
,
C. G.
, and
Chung
,
P. W. H.
,
2011
, “
Hazards in Advising Autonomy: Incorporating Hazard Modelling With System Dynamics Into the Aerospace Safety Assessment Process for UAS
,”
Sixth IET International Conference on System Safety
, Birmingham, UK, Sept. 20–22, p. 12.
15.
Joshi
,
A.
,
Heimdahl
,
M.
,
Miller
,
S.
, and
Whalen
,
M.
,
2006
, “
Model-Based Safety Analysis
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA/CR-2006-213953.
16.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
Van Wie
,
M.
,
2004
, “
The Function-Failure Design Method
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
397
407
.
17.
Lough
,
K. G.
,
Stone
,
R. B.
, and
Tumer
,
I.
,
2006
, “
The Risk in Early Design (RED) Method: Likelihood and Consequence Formulations
,”
ASME
Paper No. DETC2006-99375
.
18.
Lough
,
K. G.
,
Stone
,
R.
, and
Tumer
,
I. Y.
,
2009
, “
The Risk in Early Design Method
,”
J. Eng. Des.
,
20
(
2
), pp.
155
173
.
19.
Hutcheson
,
R. S.
, and
Grantham
,
K.
,
2012
, “
Does Access to Expert Knowledge Allow Students to Better Assess Risk?
,”
ASME
Paper No. DETC2012-71150.
20.
Hollnagel
,
E.
,
2017
,
FRAM: The Functional Resonance Analysis Method: Modelling Complex Socio-Technical Systems
,
CRC Press
, Farnham, UK.
21.
De Carvalho
,
P. V. R.
,
2011
, “
The Use of Functional Resonance Analysis Method (FRAM) in a Mid-Air Collision to Understand Some Characteristics of the Air Traffic Management System Resilience
,”
Reliab. Eng. Syst. Saf.
,
96
(
11
), pp.
1482
1498
.
22.
Rasmussen
,
B.
, and
Whetton
,
C.
,
1997
, “
Hazard Identification Based on Plant Functional Modelling
,”
Reliab. Eng. Syst. Saf.
,
55
(
2
), pp.
77
84
.
23.
Rasmussen
,
B.
,
Borch
,
K.
, and
Stärk
,
K. D.
,
2001
, “
Functional Modelling as Basis for Studying Individual and Organisational Factors–Application to Risk Analysis of Salmonella in Pork
,”
Food Control
,
12
(
3
), pp.
157
164
.
24.
Papadopoulos
,
Y.
, and
McDermid
,
J. A.
,
1999
, “
Hierarchically Performed Hazard Origin and Propagation Studies
,”
International Conference on Computer Safety, Reliability, and Security
, Toulouse, France, Sept. 27–29, pp.
139
152
.
25.
Nakao
,
H.
,
Katahira
,
M.
,
Miyamoto
,
Y.
, and
Leveson
,
N.
,
2011
, “
Safety Guided Design of Crew Return Vehicle in Concept Design Phase Using STAMP/STPA
,”
Fifth International Association for the Advancement of Space Safety Conference
, Versailles, France, Oct. 17–19, pp.
497
501
.
26.
Laracy
,
J. R.
, and
Leveson
,
N. G.
,
2007
, “
Apply Stamp to Critical Infrastructure Protection
,”
IEEE
Conference on Technologies for Homeland Security,
Woburn, MA, May 16–17, pp.
215
220
.
27.
Dulac
,
N.
, and
Leveson
,
N.
,
2004
, “
An Approach to Design for Safety in Complex Systems
,”
International Symposium on Systems Engineering (INCOSE)
, pp. 517–530.
28.
Ishimatsu
,
T.
,
Leveson
,
N. G.
,
Thomas
,
J. P.
,
Fleming
,
C. H.
,
Katahira
,
M.
,
Miyamoto
,
Y.
,
Ujiie
,
R.
,
Nakao
,
H.
, and
Hoshino
,
N.
,
2014
, “
Hazard Analysis of Complex Spacecraft Using Systems-Theoretic Process Analysis
,”
J. Spacecr. Rockets
,
51
(
2
), pp.
509
522
.
29.
Jensen
,
D.
,
Tumer
,
I. Y.
, and
Kurtoglu
,
T.
,
2009
, “
Design of an Electrical Power System Using a Functional Failure and Flow State Logic Reasoning Methodology
,”
Prognostics and Health Management Society
, pp. 1–13.
30.
Coatanéa
,
E.
,
Nonsiri
,
S.
,
Ritola
,
T.
,
Tumer
,
I. Y.
, and
Jensen
,
D. C.
,
2011
, “
A Framework for Building Dimensionless Behavioral Models to Aid in Function-Based Failure Propagation Analysis
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121001
.
31.
Papakonstantinou
,
N.
,
Sierla
,
S.
,
Jensen
,
D. C.
, and
Tumer
,
I. Y.
,
2011
, “
Capturing Interactions and Emergent Failure Behavior in Complex Engineered Systems at Multiple Scales
,”
ASME
Paper No. DETC2011-47767.
32.
Sierla
,
S.
,
Tumer
,
I.
,
Papakonstantinou
,
N.
,
Koskinen
,
K.
, and
Jensen
,
D.
,
2012
, “
Early Integration of Safety to the Mechatronic System Design Process by the Functional Failure Identification and Propagation Framework
,”
Mechatronics
,
22
(
2
), pp.
137
151
.
33.
McIntire
,
M. G.
,
Keshavarzi
,
E.
,
Tumer
,
I. Y.
, and
Hoyle
,
C.
,
2016
, “
Functional Models With Inherent Behavior: Towards a Framework for Safety Analysis Early in the Design of Complex Systems
,”
ASME
Paper No. IMECE2016-67040.
34.
Li
,
Z. S.
, and
Mobin
,
M. S.
,
2015
, “
System Reliability Assessment Incorporating Interface and Function Failure
,”
IEEE Annual Reliability and Maintainability Symposium
(
RAMS
), Palm Harbor, FL, Jan. 26–29, pp.
1
8
.
35.
Oh
,
Y.
,
Yoo
,
J.
,
Cha
,
S.
, and
Son
,
H. S.
,
2005
, “
Software Safety Analysis of Function Block Diagrams Using Fault Trees
,”
Reliab. Eng. Syst. Saf.
,
88
(
3
), pp.
215
228
.
36.
Meshkat
,
L.
,
Jenkins
,
S.
,
Mandutianu
,
S.
, and
Heron
,
V.
,
2008
, “
Automated Generation of Risk and Failure Models During Early Phase Design
,”
IEEE
Aerospace Conference,
Big Sky, MT, Mar. 1–8, pp.
1
12
.
37.
Krus
,
D.
, and
Lough
,
K. G.
,
2009
, “
Function-Based Failure Propagation for Conceptual Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
23
(
4
), pp.
409
426
.
38.
Keshavarzi
,
E.
,
McIntire
,
M.
,
Goebel
,
K.
,
Tumer
,
I. Y.
, and
Hoyle
,
C.
,
2017
, “
Resilient System Design Using Cost-Risk Analysis With Functional Models
,”
ASME
Paper No. DETC2017-67952.
39.
Keshavarzi
,
E.
,
2018
, “
Resilient Design for Complex Engineered Systems in the Early Design Phase
.”
40.
Short
,
A.-R.
,
Lai
,
A. D.
, and
Van Bossuyt
,
D. L.
,
2018
, “
Conceptual Design of Sacrificial Sub-Systems: Failure Flow Decision Functions
,”
Res. Eng. Des.
,
29
(1), pp. 23–38.
41.
Papadopoulos
,
Y.
,
Walker
,
M.
,
Parker
,
D.
,
Rüde
,
E.
,
Hamann
,
R.
,
Uhlig
,
A.
,
Grätz
,
U.
, and
Lien
,
R.
,
2011
, “
Engineering Failure Analysis and Design Optimisation With Hip-Hops
,”
Eng. Failure Anal.
,
18
(
2
), pp.
590
608
.
42.
Adachi
,
M.
,
Papadopoulos
,
Y.
,
Sharvia
,
S.
,
Parker
,
D.
, and
Tohdo
,
T.
,
2011
, “
An Approach to Optimization of Fault Tolerant Architectures Using Hip-Hops
,”
Software: Pract. Exper.
,
41
(
11
), pp.
1303
1327
.
43.
Mehr
,
A. F.
, and
Tumer
,
I. Y.
,
2006
, “
Risk-Based Decision-Making for Managing Resources During the Design of Complex Space Exploration Systems
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
1014
1022
.
44.
Hoyle
,
C.
,
Tumer
,
I. Y.
,
Mehr
,
A. F.
, and
Chen
,
W.
,
2009
, “
Health Management Allocation During Conceptual System Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
2
), p.
021002
.
45.
Pahl
,
G.
, and
Beitz
,
W.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer Science & Business Media
, London.
46.
Hulse
,
D.
,
Hoyle
,
C.
,
Goebel
,
K.
, and
Tumer
,
I.
,
2018
, “
Optimizing Function-Based Fault Propagation Model Resilience Using Expected Cost Scoring
,”
ASME
Paper No. DETC2018-85318.
47.
Erden
,
M. S.
,
Komoto
,
H.
,
van Beek
,
T. J.
,
D'Amelio
,
V.
,
Echavarria
,
E.
, and
Tomiyama
,
T.
,
2008
, “
A Review of Function Modeling: Approaches and Applications
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
2
), pp.
147
169
.
48.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.
49.
Kruse
,
B.
,
Gilz
,
T.
,
Shea
,
K.
, and
Eigner
,
M.
,
2014
, “
Systematic Comparison of Functional Models in SysML for Design Library Evaluation
,”
Proc. CIRP
,
21
, pp.
34
39
.
50.
Ullman
,
D.
,
2009
,
The Mechanical Design Process
,
McGraw-Hill Science/Engineering/Math
, New York.
51.
Ulrich
,
K. T.
, and
Eppinger
,
S.
,
2012
,
Product Design and Development
,
McGraw-Hill Education
, New York.
52.
Wood
,
K. L.
,
Stone
,
R. B.
,
Mcadams
,
D.
,
Hirtz
,
J.
, and
Szykman
,
S.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,” National Institute of Standards and Technology, Washington, DC, Report No.
1447
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.3380&rep=rep1&type=pdf.
53.
Jänsch
,
J.
, and
Birkhofer
,
H.
,
2006
, “
The Development of the Guideline VDI 2221-the Change of Direction
,”
DS 36: Ninth International Design Conference
, Dubrovnik, Croatia (
DESIGN 2006
), pp. 45–52.https://www.designsociety.org/publication/18983/THE+DEVELOPMENT+OF+THE+GUIDELINE+VDI+2221+-+THE+CHANGE+OF+DIRECTION
54.
Holling
,
C. S.
,
1973
, “
Resilience and Stability of Ecological Systems
,”
Annu. Rev. Ecol. Syst.
,
4
(
1
), pp.
1
23
.
55.
Holling
,
C. S.
,
1996
, “
Engineering Resilience Versus Ecological Resilience
,”
Engineering Within Ecological Constraints
, National Academy, Washington, DC, pp. 31–44.
56.
Pimm
,
S. L.
,
1984
, “
The Complexity and Stability of Ecosystems
,”
Nature
,
307
(
5949
), p.
321
.
57.
Masten
,
A. S.
,
2001
, “
Ordinary Magic: Resilience Processes in Development
,”
Am. Psychol.
,
56
(
3
), p.
227
.
58.
Luthar
,
S. S.
,
Cicchetti
,
D.
, and
Becker
,
B.
,
2000
, “
The Construct of Resilience: A Critical Evaluation and Guidelines for Future Work
,”
Child Dev.
,
71
(
3
), pp.
543
562
.
59.
Briguglio
,
L.
,
Cordina
,
G.
,
Farrugia
,
N.
, and
Vella
,
S.
,
2009
, “
Economic Vulnerability and Resilience: Concepts and Measurements
,”
Oxford Dev. Stud.
,
37
(
3
), pp.
229
247
.
60.
Perrings
,
C.
,
2006
, “
Resilience and Sustainable Development
,”
Environ. Dev. Econ.
,
11
(
4
), pp.
417
427
.
61.
Saint-Arnaud
,
S.
, and
Bernard
,
P.
,
2003
, “
Convergence or Resilience? A Hierarchical Cluster Analysis of the Welfare Regimes in Advanced Countries
,”
Curr. Sociol.
,
51
(
5
), pp.
499
527
.
62.
Cohen
,
R.
,
Erez
,
K.
,
Ben-Avraham
,
D.
, and
Havlin
,
S.
,
2000
, “
Resilience of the Internet to Random Breakdowns
,”
Phys. Rev. Lett.
,
85
(
21
), p.
4626
.
63.
Ash
,
J.
, and
Newth
,
D.
,
2007
, “
Optimizing Complex Networks for Resilience Against Cascading Failure
,”
Physica A
,
380
, pp.
673
683
.
64.
Sterbenz
,
J. P.
,
Hutchison
,
D.
,
Çetinkaya
,
E. K.
,
Jabbar
,
A.
,
Rohrer
,
J. P.
,
Schöller
,
M.
, and
Smith
,
P.
,
2010
, “
Resilience and Survivability in Communication Networks: Strategies, Principles, and Survey of Disciplines
,”
Comput. Networks
,
54
(
8
), pp.
1245
1265
.
65.
Lengnick-Hall
,
C. A.
,
Beck
,
T. E.
, and
Lengnick-Hall
,
M. L.
,
2011
, “
Developing a Capacity for Organizational Resilience Through Strategic Human Resource Management
,”
Human Resour. Manage. Rev.
,
21
(
3
), pp.
243
255
.
66.
Ponomarov
,
S. Y.
, and
Holcomb
,
M. C.
,
2009
, “
Understanding the Concept of Supply Chain Resilience
,”
Int. J. Logist. Manage.
,
20
(
1
), pp.
124
143
.
67.
Chen
,
X.
,
Xi
,
Z.
, and
Jing
,
P.
,
2017
, “
A Unified Framework for Evaluating Supply Chain Reliability and Resilience
,”
IEEE Trans. Reliab.
,
66
(
4
), pp.
1144
1156
.
68.
Linkov
,
I.
,
Bridges
,
T.
,
Creutzig
,
F.
,
Decker
,
J.
,
Fox-Lent
,
C.
,
Kröger
,
W.
,
Lambert
,
J. H.
,
Levermann
,
A.
,
Montreuil
,
B.
,
Nathwani
,
J.
,
Nyer, R.
,
Renn, O.
,
Scharte, B.
,
Scheffler, A.
,
Schreurs, M.
, and
Thiel-Clemen, T.
,
2014
, “
Changing the Resilience Paradigm
,”
Nat. Clim. Change
,
4
(
6
), p.
407
.
69.
Hosseini
,
S.
,
Barker
,
K.
, and
Ramirez-Marquez
,
J. E.
,
2016
, “
A Review of Definitions and Measures of System Resilience
,”
Reliab. Eng. Syst. Saf.
,
145
, pp.
47
61
.
70.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Engineering Resilience Quantification and System Design Implications: A Literature Survey
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111408
.
71.
Li
,
J.
, and
Xi
,
Z.
,
2014
, “
Engineering Recoverability: A New Indicator of Design for Engineering Resilience
,”
ASME
Paper No. DETC2014-35005.
72.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
653
658
.
73.
Von Neumann
,
J.
, and
Morgenstern
,
O.
,
2007
,
Theory of Games and Economic Behavior (Commemorative Edition)
,
Princeton University Press
, Princeton, NJ.
74.
Thurston
,
D. L.
,
2006
, “
Utility Function Fundamentals
,”
Decision Making in Engineering Design
,
ASME Press
, New York.
75.
Hazelrigg
,
G. A.
,
1999
, “
An Axiomatic Framework for Engineering Design
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
342
347
.
76.
Gu
,
X.
,
Renaud
,
J. E.
,
Ashe
,
L. M.
,
Batill
,
S. M.
,
Budhiraja
,
A. S.
, and
Krajewski
,
L. J.
,
2002
, “
Decision-Based Collaborative Optimization
,”
ASME J. Mech. Des.
,
124
(
1
), pp.
1
13
.
77.
Wassenaar
,
H. J.
, and
Chen
,
W.
,
2003
, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
490
497
.
78.
Collopy
,
P. D.
, and
Hollingsworth
,
P. M.
,
2011
, “
Value-Driven Design
,”
J. Aircr.
,
48
(
3
), pp.
749
759
.
79.
Kmenta
,
S.
, and
Ishii
,
K.
,
2000
, “
Scenario-Based FMEA: A Life Cycle Cost Perspective
,”
ASME
Paper No. DETC2000/RSAFP-14478.
80.
Hu
,
C.
, and
MacKenzie
,
C. A.
,
2017
, “
Optimizing Resilience When Designing Engineered Systems
,”
ASME
Paper No. DETC2017-68387.
81.
Haimes
,
Y. Y.
,
2009
, “
On the Definition of Resilience in Systems
,”
Risk Anal.
,
29
(
4
), pp.
498
501
.
82.
Henry
,
D.
, and
Ramirez-Marquez
,
J. E.
,
2012
, “
Generic Metrics and Quantitative Approaches for System Resilience as a Function of Time
,”
Reliab. Eng. Syst. Saf.
,
99
, pp.
114
122
.
83.
Hulse
,
D.
,
Tumer
,
K.
,
Hoyle
,
C.
, and
Tumer
,
I.
,
2018
, “
Modeling Multidisciplinary Design With Multiagent Learning
,”
Artif. Intell. Eng. Des. Anal. Manuf.
(epub).
84.
Helms
,
B.
,
Shea
,
K.
, and
Hoisl
,
F.
,
2009
, “
A Framework for Computational Design Synthesis Based on Graph-Grammars and Function-Behavior-Structure
,”
ASME
Paper No. DETC2009-86851
.
85.
Sridharan
,
P.
, and
Campbell
,
M. I.
,
2004
, “
A Grammar for Function Structures
,”
ASME
Paper No. DETC2004-57130
.
86.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
87.
Vesely
,
W.
,
Fragola
,
J.
,
Minarick
,
J.
, and
Railsback
,
Ja.
,
2002
, “
Fault Tree Handbook With Aerospace Applications
,” NASA Office of Safety and Mission Assurance, Washington, DC, accessed Oct. 16, 2018, https://elibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/25.%20NASA_Fault_Tree_Handbook_with_Aerospace_Applications%20-%20Copy.pdf
88.
Keshavarzi
,
E.
,
McIntire
,
M.
, and
Hoyle
,
C.
,
2015
, “
Dynamic Design Using the Kalman Filter for Flexible Systems With Epistemic Uncertainty
,”
ASME
Paper No. DETC2015-46378.
You do not currently have access to this content.