The performance of a product varies with respect to time and space if the associated limit-state function involves time and space. This study develops an uncertainty analysis method that quantifies the effect of random input variables on the performance (response) over time and space. The combination of the first order reliability method (FORM) and the second-order reliability method (SORM) is used to approximate the extreme value of the response with respect to space at discretized instants of time. Then the response becomes a Gaussian stochastic process that is fully defined by the mean, variance, and autocorrelation functions obtained from FORM and SORM, and a sequential single loop procedure is performed for spatial and random variables. The method is successfully applied to the reliability analysis of a crank-slider mechanism, which operates in a specified period of time and space.

References

References
1.
Du
,
X.
,
2015
, “
Development of Engineering Uncertainty Repository
,”
ASME
Paper No. DETC2015-46172.
2.
Du
,
X.
, and
Chen
,
W.
,
2001
, “
A Most Probable Point-Based Method for Efficient Uncertainty Analysis
,”
J. Des. Manuf. Autom.
,
4
(
1–2
), pp.
47
66
.
3.
Hu
,
Z.
, and
Du
,
X.
,
2012
, “
Reliability Analysis for Hydrokinetic Turbine Blades
,”
Renewable Energy
,
48
, pp.
251
262
.
4.
Hu
,
Z.
, and
Du
,
X.
,
2014
, “
Lifetime Cost Optimization With Time-Dependent Reliability
,”
Eng. Optim.
,
46
(
10
), pp.
1389
1410
.
5.
Hu
,
Z.
,
Li
,
H.
,
Du
,
X.
, and
Chandrashekhara
,
K.
,
2013
, “
Simulation-Based Time-Dependent Reliability Analysis for Composite Hydrokinetic Turbine Blades
,”
Struct. Multidiscip. Optim.
,
47
(
5
), pp.
765
781
.
6.
Choi
,
S. K.
,
Canfield
,
R. A.
, and
Grandhi
,
R. V.
,
2007
,
Reliability-Based Structural Design
,
Springer
,
London
.
7.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
,
2005
, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1068
1076
.
8.
Huang
,
B.
, and
Du
,
X.
,
2008
, “
Probabilistic Uncertainty Analysis by Mean-Value First Order Saddlepoint Approximation
,”
Reliab. Eng. Syst. Saf.
,
93
(
2
), pp.
325
336
.
9.
Zhang
,
J.
, and
Du
,
X.
,
2010
, “
A Second-Order Reliability Method With First-Order Efficiency
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101006
.
10.
Madsen, H. O.
,
Krenk, S.
, and
Lind, N. C.
, 1985, “
Methods of Structural Safety
,” Prentice Hall, Englewood Cliffs, NJ.
11.
Banerjee
,
B.
, and
Smith
,
B. G.
,
2011
, “
Reliability Analysis for Inserts in Sandwich Composites
,”
Proc. Adv. Mater. Res.
,
275
, pp.
234
238
.
12.
Kim
,
D.-W.
,
Jung
,
S.-S.
,
Sung
,
Y.-H.
, and
Kim
,
D.-H.
,
2011
, “
Optimization of SMES Windings Utilizing the First-Order Reliability Method
,”
Trans. Korean Inst. Electr. Eng.
,
60
(
7
), pp.
1354
1359
.
13.
Huang
,
B.
, and
Du
,
X.
,
2006
, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
26
33
.
14.
Jin
,
R.
,
Du
,
X.
, and
Chen
,
W.
,
2003
, “
The Use of Metamodeling Techniques for Optimization Under Uncertainty
,”
Struct. Multidiscip. Optim.
,
25
(
2
), pp.
99
116
.
15.
Isukapalli
,
S.
,
Roy
,
A.
, and
Georgopoulos
,
P.
,
1998
, “
Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems
,”
Risk Anal.
,
18
(
3
), pp.
351
363
.
16.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
.
17.
Xiong
,
F.
,
Xiong
,
Y.
,
Greene
,
S.
,
Chen
,
W.
, and
Yang
,
S.
,
2010
, “
A New Sparse Grid Based Method for Uncertainty Propagation
,”
Struct. Multidiscip. Optim.
,
41
(
3
), pp.
335
349
.
18.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
,
Wiley
,
New York
.
19.
Soboĺ
,
I.
,
1990
, “
Quasi-Monte Carlo Methods
,”
Prog. Nucl. Energy
,
24
(
1–3
), pp.
55
61
.
20.
Dey
,
A.
, and
Mahadevan
,
S.
,
1998
, “
Ductile Structural System Reliability Analysis Using Adaptive Importance Sampling
,”
Struct. Saf.
,
20
(
2
), pp.
137
154
.
21.
Au
,
S.-K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
.
22.
Der Kiureghian
,
A.
, and
Ke
,
J.-B.
,
1988
, “
The Stochastic Finite Element Method in Structural Reliability
,”
Probab. Eng. Mech.
,
3
(
2
), pp.
83
91
.
23.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
, “
Stochastic Finite Element Method: Response Statistics
,”
Stochastic Finite Elements: A Spectral Approach
,
Springer
, New York, pp.
101
119
.
24.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.
25.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
.
26.
Jiang
,
C.
,
Wei
,
X. P.
,
Huang
,
Z. L.
, and
Liu
,
J.
,
2017
, “
An Outcrossing Rate Model and Its Efficient Calculation for Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041402
.
27.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
.
28.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.
29.
Wang
,
Z.
, and
Chen
,
W.
,
2016
, “
Time-Variant Reliability Assessment Through Equivalent Stochastic Process Transformation
,”
Reliab. Eng. Syst. Saf.
,
152
, pp.
166
175
.
30.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.
31.
Wang
,
Z.
,
Mourelatos
,
Z. P.
,
Li
,
J.
,
Baseski
,
I.
, and
Singh
,
A.
,
2014
, “
Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061008
.
32.
Singh
,
A.
,
Mourelatos
,
Z.
, and
Nikolaidis
,
E.
,
2011
, “
Time-Dependent Reliability of Random Dynamic Systems Using Time-Series Modeling and Importance Sampling
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
929
946
.
33.
Chen
,
J.-B.
, and
Li
,
J.
,
2005
, “
Dynamic Response and Reliability Analysis of Non-Linear Stochastic Structures
,”
Probab. Eng. Mech.
,
20
(
1
), pp.
33
44
.
34.
Du
,
X.
,
2014
, “
Time-Dependent Mechanism Reliability Analysis With Envelope Functions and First-Order Approximation
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081010
.
35.
Yu
,
S.
, and
Wang
,
Z.
,
2018
, “
A Novel Time-Variant Reliability Analysis Method Based on Failure Processes Decomposition for Dynamic Uncertain Structures
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051401
.
36.
Yu
,
S.
,
Wang
,
Z.
, and
Meng
,
D.
,
2018
, “
Time-Variant Reliability Assessment for Multiple Failure Modes and Temporal Parameters
,”
Struct. Multidiscip. Optim.
,
58
(4), pp. 1705–1717.
37.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2018
, “
Reliability Analysis of Multidisciplinary System With Spatio-Temporal Response Using Adaptive Surrogate Modeling
,”
AIAA
Paper No. AIAA 2018-1934.
38.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
A Surrogate Modeling Approach for Reliability Analysis of a Multidisciplinary System With Spatio-Temporal Output
,”
Struct. Multidiscip. Optim.
,
56
(
3
), pp.
553
569
.
39.
Shi
,
Y.
,
Lu
,
Z.
,
Cheng
,
K.
, and
Zhou
,
Y.
,
2017
, “
Temporal and Spatial Multi-Parameter Dynamic Reliability and Global Reliability Sensitivity Analysis Based on the Extreme Value Moments
,”
Struct. Multidiscip. Optim.
,
56
(
1
), pp.
117
129
.
40.
Shi
,
Y.
,
Lu
,
Z.
,
Zhang
,
K.
, and
Wei
,
Y.
,
2017
, “
Reliability Analysis for Structures With Multiple Temporal and Spatial Parameters Based on the Effective First-Crossing Point
,”
ASME J. Mech. Des.
,
139
(
12
), p.
121403
.
41.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
A Random Field Approach to Reliability Analysis With Random and Interval Variables
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
1
(
4
), p.
041005
.
42.
Hu
,
Z.
, and
Du
,
X.
,
2016
, “
A Random Field Method for Time-Dependent Reliability Analysis With Random and Interval Variables
,”
ASME
Paper No. DETC2016-59031.
43.
Guo
,
J.
, and
Du
,
X.
,
2010
, “
Reliability Analysis for Multidisciplinary Systems With Random and Interval Variables
,”
AIAA J.
,
48
(
1
), pp.
82
91
.
44.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
,
DACE: A Matlab Kriging Toolbox
,
Technical University of Denmark
, Kgs. Lyngby, Denmark.
45.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
1
21
.
46.
Jiang
,
C.
,
Lu
,
G.
,
Han
,
X.
, and
Liu
,
L.
,
2012
, “
A New Reliability Analysis Method for Uncertain Structures With Random and Interval Variables
,”
Int. J. Mech. Mater. Des.
,
8
(
2
), pp.
169
182
.
You do not currently have access to this content.