Mass collaboration within the design engineering process supports the inclusion of unique perspectives when working on complex problems. Increasing the number of individuals providing input and support into these perplexing challenges can increase innovation, decrease product development times, and provide solutions that truly encompass the needs of the market. One of the greatest challenges within mass collaboration engineering projects is the organization of individuals within these large design efforts. Understanding which projects would most effectively benefit from additional designers or contributors is paramount to supporting mass collaboration design networks. Within such networks, there exists a large number of contributors as well as a large pool of potential projects. Matching individuals with the projects that they can provide the greatest benefit to or building a team of individuals for newly developed projects requires the consideration of previous performance and an understanding of individual competencies and design abilities. This work presents a framework which recommends individual project placement based on individual abilities and the project requirements. With this work, a pool of individuals and potential projects are simulated, and the application of a hybrid recommender system is explored. To complement the simulation, an additional case study with empirical data is performed to study the potential applicability of the proposed framework. Overall, it was found that recommended team compositions greatly outperform the baseline team development, most notably as greater consideration is placed on collaborative recommendations.

References

References
1.
Howe
,
J.
,
2006
, “
The Rise of Crowdsourcing
,” accessed Dec. 2016, http://www.wired.com/wired/archive/14.06/crowds.html
2.
Estellés-Arolas
,
E.
, and
González-Ladrón-de-Guevara
,
F.
,
2012
, “
Towards an Integrated Crowdsourcing Definition
,”
J. Inf. Sci.
,
38
(
2
), pp.
189
200
.
3.
Miller
,
B. N.
,
Albert
,
I.
,
Lam
,
S. K.
,
Konstan
,
J. A.
, and
Riedl
,
J.
,
2003
, “
MovieLens Unplugged: Experiences With an Occasionally Connected Recommender System
,”
Eighth International Conference on Intelligent User Interfaces
, Miami, FL, Jan. 12–15, pp.
263
266
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.7463&rep=rep1&type=pdf
4.
Linden
,
G.
,
Smith
,
B.
, and
York
,
J.
,
2003
, “
Amazon.com Recommendations: Item-to-Item Collaborative Filtering
,”
IEEE Internet Comput.
,
7
(
1
), pp.
76
80
.
5.
Liu
,
J.
,
Dolan
,
P.
, and
Pedersen
,
E. R.
,
2010
, “
Personalized News Recommendation Based on Click Behavior
,”
15th International Conference on Intelligent User Interfaces
, Hong Kong, China, Feb. 7–10, pp.
31
40
.
6.
Aitamurto
,
T.
,
2012
,
Crowdsourcing for Democracy: A New Era in Policy-Making
,
Parliament of Finland
,
Helsinki, Finland
.
7.
Aitamurto
,
T.
, and
Landemore
,
H. E.
,
2015
, “
Five Design Principles for Crowdsourced Policymaking: Assessing the Case of Crowdsourced Off-Road Traffic Law in Finland
,”
J. Soc. Media Organ.
,
2
(
1
), pp.
1
19
.http://www2.mitre.org/public/jsmo/pdfs/02-01-5-design-principles.pdf
8.
Brabham
,
D. C.
,
2009
, “
Crowdsourcing the Public Participation Process for Planning Projects
,”
Plan. Theory
,
8
(
3
), pp.
242
262
.
9.
Bentzien
,
J.
,
Bharadwaj
,
R.
, and
Thompson
,
D. C.
,
2015
, “
Crowdsourcing in Pharma: A Strategic Framework
,”
Drug Discov. Today
,
20
(
7
), pp.
874
883
.
10.
Poetz
,
M. K.
, and
Schreier
,
M.
,
2012
, “
The Value of Crowdsourcing: Can Users Really Compete With Professionals in Generating New Product Ideas?
,”
J. Prod. Innov. Manage.
,
29
(
2
), pp.
245
256
.
11.
Koch
,
G.
,
Füller
,
J.
, and
Brunswicker
,
S.
,
2011
, “
Online Crowdsourcing in the Public Sector: How to Design Open Government Platforms
,”
Online Communities and Social Computing
,
Springer
, Berlin, pp.
203
212
.
12.
Brabham
,
D. C.
,
2013
, “
Using Crowdsourcing in Government
,” IBM Center for the Business of Government, Washington, DC, accessed Dec. 5, 2016, http://www.businessofgovernment.org/report/using-crowdsourcing-government
13.
Schenk
,
E.
, and
Guittard
,
C.
,
2009
, “
Crowdsourcing: What Can Be Outsourced to the Crowd, and Why
,”
Workshop on Open Source Innovation, Strasbourg
, France, p.
72
.
14.
Brabham
,
D. C.
,
2008
, “
Crowdsourcing as a Model for Problem Solving: An Introduction and Cases
,”
Converg. Int. J. Res. New Media Technol.
,
14
(
1
), pp.
75
90
.
15.
Howe
,
J.
,
2008
,
Crowdsourcing: Why the Power of the Crowd is Driving the Future of Business
,
Three Rivers Press
, New York.
16.
Panchal
,
J. H.
,
Sha
,
Z.
, and
Kannan
,
K. N.
,
2017
, “
Understanding Design Decisions Under Competition Using Games With Information Acquisition and a Behavioral Experiment
,”
ASME J. Mech. Des.
,
139
(
9
), p. 091402.
17.
Sha
,
Z.
,
Kannan
,
K. N.
, and
Panchal
,
J. H.
,
2015
, “
Behavioral Experimentation and Game Theory in Engineering Systems Design
,”
ASME J. Mech. Des.
,
137
(
5
), p. 051405.
18.
Vincent
,
T. L.
,
1983
, “
Game Theory as a Design Tool
,”
J. Mech. Transm. Autom. Des.
,
105
(
2
), pp.
165
170
.
19.
Lewis
,
K.
, and
Mistree
,
F.
,
1997
, “
Modeling Interactions in Multidisciplinary Design: A Game Theoretic Approach
,”
AIAA J.
,
35
(
8
), pp.
1387
1392
.
20.
Takai
,
S.
,
2010
, “
A Game-Theoretic Model of Collaboration in Engineering Design
,”
ASME J. Mech. Des.
,
132
(
5
), p. 051005.
21.
Takai
,
S.
,
2016
, “
A Multidisciplinary Framework to Model Complex Team-Based Product Development
,”
ASME J. Mech. Des.
,
138
(
6
), p. 061402.
22.
Brabham
,
D. C.
,
2010
, “
Moving the Crowd at Threadless: Motivations for Participation in a Crowdsourcing Application
,”
Inf. Commun. Soc.
,
13
(
8
), pp.
1122
1145
.
23.
Ren
,
Y.
,
Bayrak
,
A. E.
, and
Papalambros
,
P. Y.
,
2016
, “
Ecoracer: Game-Based Optimal Electric Vehicle Design and Driver Control Using Human Players
,”
ASME J. Mech. Des.
,
138
(
6
), p. 061407.
24.
Burnap
,
A.
,
Ren
,
Y.
,
Gerth
,
R.
,
Papazoglou
,
G.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2015
, “
When Crowdsourcing Fails: A Study of Expertise on Crowdsourced Design Evaluation
,”
ASME J. Mech. Des.
,
137
(
3
), p. 031101.
25.
Burnap
,
A.
,
Ren
,
Y.
,
Papalambros
,
P. Y.
,
Gonzalez
,
R.
, and
Gerth
,
R.
,
2013
, “
A Simulation Based Estimation of Crowd Ability and Its Influence on Crowdsourced Evaluation of Design Concepts
,”
ASME
Paper No. DETC2013-13020
.
26.
Fuge
,
M.
, and
Agogino
,
A.
,
2014
, “
How Online Design Communities Evolve Over Time: The Birth and Growth of OpenIDEO
,”
ASME
Paper No. DETC2014-35243
.
27.
Fuge
,
M.
,
Tee
,
K.
,
Agogino
,
A.
, and
Maton
,
N.
,
2014
, “
Analysis of Collaborative Design Networks: A Case Study of OpenIDEO
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
2
), p. 021009.
28.
Ball
,
Z.
, and
Lewis
,
K.
,
2017
, “
The Design of the Crowd: Organizing Mass Collaboration Efforts
,”
ASME
Paper No. DETC2017-68127
.
29.
Ball
,
Z.
, and
Lewis
,
K.
,
2018
, “
Project Recommendation for Mass Collaboration Design Networks
,”
ASME
Paper No. DETC2018-85978
.
30.
Ball
,
Z.
, and
Lewis
,
K.
,
2018
, “
Observing Network Characteristics in Mass Collaboration Design Projects
,”
Des. Sci.
,
4
, p. e4.
31.
Ricci
,
F.
,
Rokach
,
L.
, and
Shapira
,
B.
,
2011
, “
Introduction to Recommender Systems Handbook
,”
Recommender Systems Handbook
,
Springer
, Boston, MA, pp.
1
35
.
32.
Adomavicius
,
G.
, and
Tuzhilin
,
A.
,
2005
, “
Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions
,”
IEEE Trans. Knowl. Data Eng.
,
17
(
6
), pp.
734
749
.
33.
Baeza-Yates
,
R.
, and
Ribeiro-Neto
,
B.
,
1999
,
Modern Information Retrieval
,
ACM Press
,
New York
.
34.
Salton
,
G.
,
1989
, “
Automatic Text Processing: The Transformation, Analysis, and Retrieval of Read
,” Addison-Wesley, Reading, MA.
35.
Pazzani
,
M.
, and
Billsus
,
D.
,
1997
, “
Learning and Revising User Profiles: The Identification of Interesting Web Sites
,”
Mach. Learn.
,
27
(
3
), pp.
313
331
.
36.
Lops
,
P.
,
De Gemmis
,
M.
, and
Semeraro
,
G.
,
2011
, “
Content-Based Recommender Systems: State of the Art and Trends
,”
Recommender Systems Handbook
,
Springer
, Boston, MA, pp.
73
105
.
37.
Sarwar
,
B.
,
Karypis
,
G.
,
Konstan
,
J.
, and
Riedl
,
J.
,
2001
, “
Item-Based Collaborative Filtering Recommendation Algorithms
,”
Tenth International Conference on World Wide Web
, Hong Kong, China, May 1–5, pp.
285
295
.
38.
Aggarwal
,
C. C.
,
Wolf
,
J. L.
,
Wu
,
K.-L.
, and
Yu
,
P. S.
,
1999
, “
Horting Hatches an Egg: A New Graph-Theoretic Approach to Collaborative Filtering
,”
Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, San Diego, CA, Aug. 15–18, pp.
201
212
.
39.
Pazzani
,
M. J.
,
1999
, “
A Framework for Collaborative, Content-Based and Demographic Filtering
,”
Artif. Intell. Rev.
,
13
(
5/6
), pp.
393
408
.
40.
Geiger
,
D.
, and
Schader
,
M.
,
2014
, “
Personalized Task Recommendation in Crowdsourcing Information Systems—Current State of the Art
,”
Decis. Support Syst.
,
65
, pp.
3
16
.
41.
Stankovic
,
M.
,
Jovanovic
,
J.
, and
Laublet
,
P.
,
2011
, “
Linked Data Metrics for Flexible Expert Search on the Open Web
,” Extended Semantic Web Conference, Crete, Greece, May 29–June 2, pp.
108
123
.
42.
Dror
,
G.
,
Koren
,
Y.
,
Maarek
,
Y.
, and
Szpektor
,
I.
,
2011
, “
I Want to Answer; Who Has a Question?: Yahoo! Answers Recommender System
,”
17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, San Diego, CA, Aug. 21–24, pp.
1109
1117
.
43.
Chilton
,
L. B.
,
Horton
,
J. J.
,
Miller
,
R. C.
, and
Azenkot
,
S.
,
2010
, “
Task Search in a Human Computation Market
,”
ACM SIGKDD Workshop on Human Computation
, Washington, DC, July 25, pp.
1
9
.
44.
Yuen
,
M.-C.
,
King
,
I.
, and
Leung
,
K.-S.
,
2011
, “
Task Matching in Crowdsourcing
,” International Conference on Internet of Things and Fourth International Conference on Cyber, Physical and Social Computing (
IThings/CPSCom
), Dalian, China, Oct. 19–22, pp.
409
412
.
45.
Cosley
,
D.
,
Frankowski
,
D.
,
Terveen
,
L.
, and
Riedl
,
J.
,
2007
, “
SuggestBot: Using Intelligent Task Routing to Help People Find Work in Wikipedia
,”
12th International Conference on Intelligent User Interfaces
, Honolulu, HI, Jan. 28–31, pp.
32
41
.
46.
Castro-Herrera
,
C.
,
2010
, “
A Hybrid Recommender System for Finding Relevant Users in Open Source Forums
,”
Third International Workshop On Managing Requirements Knowledge
(
MARK
), Sydney, Australia, Sept. 27, pp.
41
50
.
47.
Kao
,
W.-C.
,
Liu
,
D.-R.
, and
Wang
,
S.-W.
,
2010
, “
Expert Finding in Question-Answering Websites: A Novel Hybrid Approach
,”
ACM Symposium on Applied Computing
, Sierre, Switzerland, Mar. 22–26, pp.
867
871
.
48.
Liu
,
X.
,
Croft
,
W. B.
, and
Koll
,
M.
,
2005
, “
Finding Experts in Community-Based Question-Answering Services
,”
14th ACM International Conference on Information and Knowledge Management
, Bremen, Germany, Oct. 31–Nov. 5, pp.
315
316
.
49.
Riahi
,
F.
,
Zolaktaf
,
Z.
,
Shafiei
,
M.
, and
Milios
,
E.
,
2012
, “
Finding Expert Users in Community Question Answering
,”
21st International Conference on World Wide Web
, Lyon, France, Apr. 16–20, pp.
791
798
.
50.
University at Buffalo School of Engineering and Applied Sciences, 2016, “
Course Flowsheets
,” University at Buffalo, Buffalo, NY, accessed Dec. 5, 2016, https://www.eng.buffalo.edu/undergrad/advisement/flowsheets/
51.
Pedersen
,
K.
,
Emblemsvag
,
J.
,
Bailey
,
R.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2000
, “
Validating Design Methods Research
,”
ASME
Paper No. DETC2000/DTM-14579
. https://www.researchgate.net/profile/Farrokh_Mistree/publication/238355807_The''Validation_Square''-Validating_Design_Methods/links/5616e3b808ae839f3c7d586c.pdf
52.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications
,
MIT Press
, Cambridge, MA.
53.
Browning
,
T. R.
,
2001
, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manage.
,
48
(
3
), pp.
292
306
.
54.
Satzger
,
B.
,
Psaier
,
H.
,
Schall
,
D.
, and
Dustdar
,
S.
,
2011
, “
Stimulating Skill Evolution in Market-Based Crowdsourcing
,”
International Conference on Business Process Management
, Clermont-Ferrand, France, Aug. 30–Sept. 2, Raleigh, NC, Apr. 26–30, pp.
66
82
.
55.
Horowitz
,
D.
, and
Kamvar
,
S. D.
,
2010
, “
The Anatomy of a Large-Scale Social Search Engine
,”
19th International Conference on World Wide Web
, pp.
431
440
.
56.
Burke
,
R.
, and
Ramezani
,
M.
,
2011
, “
Matching Recommendation Technologies and Domains
,”
Recommender Systems Handbook
,
Springer
, Boston, MA, Raleigh, NC, Apr. 26–30, pp.
367
386
.
57.
Kramer
,
J.
,
Agogino
,
A. M.
, and
Roschuni
,
C.
,
2016
, “
Characterizing Competencies for Human-Centered Design
,”
ASME
Paper No. DETC2016-60085
.
You do not currently have access to this content.