A properly designed product-system platform seeks to reduce the cost and lead time for design and development of the product-system family. A key goal is to achieve a tradeoff between economy of scope from product variety and economy of scale from platform sharing. Traditionally, product platform planning uses heuristic and manual approaches and relies almost solely on expertise and intuition. In this paper, we propose a data-driven method to draw the boundary of a platform-system, complementing the other platform design approaches and assisting designers in the architecting process. The method generates a network of functions through relationships of their co-occurrences in prior designs of a product or systems domain and uses a network analysis algorithm to identify an optimal core–periphery structure. Functions identified in the network core co-occur cohesively and frequently with one another in prior designs, and thus, are suggested for inclusion in the potential platform to be shared across a variety of product-systems with peripheral functions. We apply the method to identify the platform functions for the application domain of spherical rolling robots (SRRs), based on patent data.

References

References
1.
Pine
,
J. B.
,
1993
,
Mass Customization: The New Frontier in Business Competition
,
Harvard Business School Press
,
Boston, MA
.
2.
Simpson
,
T. W.
,
Seepersad
,
C. C.
, and
Mistree
,
F.
,
2001
, “
Balancing Commonality and Performance Within the Concurrent Design of Multiple Products in a Product Family
,”
Concurr. Eng. Res. Appl.
,
9
(
3
), pp.
177
190
.
3.
Simpson
,
T.
,
2003
, “
Product Platform Design and Optimization: Status and Promise
,”
ASME
Paper No. DETC2003/DAC-48717.
4.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
5.
Meyer
,
M. H.
, and
Utterback
,
J. M.
,
1993
, “
The Product Family and the Dynamics of Core Capability
,”
Sloan Manage. Rev.
,
34
(
3
), pp.
29
47
.https://sloanreview.mit.edu/article/the-product-family-and-the-dynamics-of-core-capability/
6.
Wilhelm
,
B.
,
1997
, “
Platform and Modular Concepts at Volkswagen—Their Effects on the Assembly Process
,”
Transforming Automobile Assembly
,
Springer
,
Berlin
, pp.
146
156
.
7.
Ericsson
,
G.
, and
Anna
,
E.
,
1999
,
Controlling Design Variants: Modular Product Platforms
,
Society of Manufacturing Engineers
, Dearborn, MI.
8.
McGrath
,
M. E.
,
1995
,
Product Strategy for High-Technology Companies: How to Achieve Growth, Competitive Advantage, and Increased Profits
,
Irwin Professional Publishing
, Burr Ridge, IL.
9.
Robertson
,
D.
, and
Ulrich
,
K.
,
1998
, “
Planning for Product Platforms
,”
Sloan Manag. Rev.
,
39
(
4
), pp.
19
31
.https://sloanreview.mit.edu/article/planning-for-product-platforms/
10.
Simpson
,
T. W.
,
Siddique
,
Z.
, and
Jiao
,
J.
,
2006
,
Product Platform and Product Family Design: Methods and Applications
, Springer, New York.
11.
Kurtadikar
,
R. M.
, and
Stone
,
R. B.
,
2003
, “
Investigation of Customer Needs Frequency vs. Weight in Product Platform Planning
,”
ASME
Paper No. IMECE2003-42786.
12.
Du
,
X.
,
Jiao
,
J.
, and
Tseng
,
M. M.
,
2001
, “
Architecture of Product Family: Fundamentals and Methodology
,”
Concurrent Eng.
,
9
(
4
), pp.
309
325
.
13.
Ulrich
,
K. T.
, and
Tung
,
K.
,
1991
, “
Fundamentals of Product Modularity
,”
Winter Annual Meeting, Atlanta, GA
, Dec. 1–6, pp. 219–231.
14.
Erlandsson
,
A.
,
Erixon
,
G.
, and
Ostgren
,
B.
,
1992
, “
Product Modules—The Link Between QFD and DFA
,”
International Forum on Product Design for Manufacture and Assembly
, Newport, RI, June 15–16.
15.
Yu
,
T.-L.
,
Yassine
,
A. A.
, and
Goldberg
,
D. E.
,
2007
, “
An Information Theoretic Method for Developing Modular Architectures Using Genetic Algorithms
,”
Res. Eng. Des.
,
18
(
2
), pp.
91
109
.
16.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
,
2000
, “
A Heuristic Method for Identifying Modules for Product Architectures
,”
Des. Stud.
,
21
(1), pp.
5
31
.
17.
Salhieh
,
S. M.
, and
Kamrani
,
A. K.
,
1999
, “
Macro Level Product Development Using Design for Modularity
,”
Robot. Comput. Integr. Manuf.
,
15
(
4
), pp.
319
329
.
18.
Hölttä
,
K.
,
Tang
,
V.
, and
Seering
,
W. P.
,
2003
, “
Modularizing Product Architectures Using Dendrograms
,”
14th International Conference on Engineering Design
(
ICED’ 03
), Stockholm, Sweden, Aug. 19–21, pp.
343
344
.https://www.researchgate.net/publication/37595148_Modularizing_Product_Architectures_Using_Dendrograms
19.
Fixson
,
S. K.
,
2005
, “
Product Architecture Assessment: A Tool to Link Product, Process, and Supply Chain Design Decisions
,”
J. Oper. Manag.
,
23
(
3–4
), pp.
345
369
.
20.
Simpson
,
T. W.
,
2004
, “
Product Platform Design and Customization: Status and Promise
,”
AI EDAM
,
18
(
1
), pp.
3
20
.
21.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
,
2002
, “
Effective Product Family Design Using Physical Programming
,”
Eng. Optim.
,
34
(
3
), pp.
245
261
.
22.
Fellini
,
R.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Perez-Duarte
,
A.
,
2002
, “
Platform Selection Under Performance Loss Constraints in Optimal Design of Product Families
,”
ASME
Paper No. DETC2002/DAC-34099.
23.
Nayak
,
R. U.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2002
, “
A Variation-Based Method for Product Family Design
,”
Eng. Optim.
,
34
(
1
), pp.
65
81
.
24.
Gonzalez-Zugasti
,
J. P.
,
Otto
,
K. N.
, and
Baker
,
J. D.
,
2000
, “
Method for Architecting Product Platforms
,”
Res. Eng. Des.
,
12
(
2
), pp.
61
72
.
25.
Simpson
,
T.
,
Maier
,
J.
, and
Mistree
,
F.
,
1999
, “
A Product Platform Concept Exploration Method for Product Family Design
,”
ASME
Paper No. DETC99/DTM-8761.
26.
Conner
,
C.
,
De Kroon
,
J.
, and
Mistree
,
F.
,
1999
, “
A Product Variety Tradeoff Evaluation Method for a Family of Cordless Drill Transmissions
,”
ASME
Paper No. DETC99/DAC-8625.
27.
Fellini
,
R.
,
Papalambros
,
P.
, and
Weber
,
T.
,
2000
, “
Application of a Product Platform Design Process to Automotive Powertrains
,”
AIAA
Paper No. 2000-4849.https://deepblue.lib.umich.edu/bitstream/handle/2027.42/77031/AIAA-2000-4849-139.pdf?sequence=1
28.
Kokkolaras
,
M.
,
Fellini
,
R.
,
Kim
,
H. M.
,
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
,
2002
, “
Extension of the Target Cascading Formulation to the Design of Product Families
,”
Struct. Multidiscip. Optim.
,
24
(
4
), pp.
293
301
.
29.
Seepersad
,
C. C.
,
Hernandez
,
G.
, and
Allen
,
J. K.
,
2000
, “
A Quantitative Approach to Determining Product Platform Extent
,”
ASME
Paper No. DETC2000/DAC-14288.
30.
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
,
2000
, “
Modular Platform-Based Product Family Design
,”
ASME
Paper No. DETC-2000/DAC-14238.
31.
Fujita
,
K.
, and
Yoshida
,
H.
,
2004
, “
Product Variety Optimization Simultaneously Designing Module Combination and Module Attributes
,”
Concurrent Eng.
, 12(2), pp.
105
118
.
32.
D'Souza
,
B.
, and
Simpson
,
T. W.
,
2003
, “
A Genetic Algorithm Based Method for Product Family Design Optimization
,”
Eng. Optim.
,
35
(
1
), pp.
1
18
.
33.
Simpson
,
T. W.
, and
D'Souza
,
B. S.
,
2004
, “
Assessing Variable Levels of Platform Commonality Within a Product Family Using a Multiobjective Genetic Algorithm
,”
Concurrent Eng. Res. Appl.
,
12
(
2
), pp.
119
129
.
34.
Fellini
,
R.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Perez-Duarte
,
A.
,
2005
, “
Platform Selection Under Performance Bounds in Optimal Design of Product Families
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
524
535
.
35.
Yearsley
,
J. D.
, and
Mattson
,
C. A.
,
2008
, “
Product Family Member and Platform Identification With Concurrent Variable and Objective Space Smart Pareto Filtering
,”
AIAA
Paper No. 2008-2220.
36.
Moon
,
S. K.
,
Park
,
K. J.
, and
Simpson
,
T. W.
,
2014
, “
Platform Design Variable Identification for a Product Family Using Multi-Objective Particle Swarm Optimization
,”
Res. Eng. Des.
,
25
(
2
), pp.
95
108
.
37.
Fellini
,
R.
, Kokkolaras, M., Michelena, N., Papalambros, P., Perez-Duarte, A., Saitou, K., and Fenyes, P.,
2004
, “
A Sensitivity-Based Commonality Strategy for Family Products of Mild Variation, With Application to Automotive Body Structures
,”
Struct. Multidiscip. Optim.
,
27
(
1–2
), pp.
89
96
.
38.
Agard
,
B.
, and
Kusiak
,
A.
,
2004
, “
Data-Mining-Based Methodology for the Design of Product Families
,”
Int. J. Prod. Res.
,
42
(
15
), pp.
2955
2969
.
39.
Kuang
,
J.
, and
Jiang
,
P.
,
2009
, “
Product Platform Design for a Product Family Based on Kansei Engineering
,”
J. Eng. Des.
,
20
(
6
), pp.
589
607
.
40.
Nagamachi
,
M.
,
1995
, “
Kansei Engineering: A New Ergonomic Consumer-Oriented Technology for Product Development
,”
Int. J. Ind. Ergon.
,
15
(
1
), pp.
3
11
.
41.
Cheng
,
X.
,
2012
, “
Functional Requirements Analysis-Based Method for Product Platform Design in Axiomatic Design
,”
J. Digital Inf. Manag.
,
10
(
5
), pp.
312
319
.
42.
Qin
,
H.
,
Zhong
,
Y.
,
Xiao
,
R.
, and
Zhang
,
W.
,
2005
, “
Product Platform Commonization: Platform Construction and Platform Elements Capture
,”
Int. J. Adv. Manuf. Technol.
,
25
(
11–12
), pp.
1071
1077
.
43.
Dai
,
Z.
, and
Scott
,
M. J.
,
2007
, “
Product Platform Design Through Sensitivity Analysis and Cluster Analysis
,”
J. Intell. Manuf.
,
18
(
1
), pp.
97
113
.
44.
Kalligeros
,
K.
,
De Weck
,
O.
, and
De Neufville
,
R.
,
2006
, “
Platform Identification Using Design Structure Matrices
,”
16th Annual International Symposium of the International Council on Systems Engineering
(
INCOSE
), Orlando, FL, July 9–13, pp. 579–594.http://strategic.mit.edu/docs/3_75_INCOSE-sDSM.pdf
45.
Steva
,
E. D.
,
Rice
,
E. N.
,
Marion
,
T. J.
,
Simpson
,
T. W.
, and
Stone
,
R. B.
,
2018
, “
Two Methodologies for Identifying Product Platform Elements Within an Existing Set of Products
,”
ASME
Paper No. DETC2006-99234.
46.
Qu
,
T.
,
Bin
,
S.
,
Huang
,
G. Q.
, and
Yang
,
H. D.
,
2011
, “
Two-Stage Product Platform Development for Mass Customisation
,”
Int. J. Prod. Res.
,
49
(
8
), pp.
2197
2219
.
47.
Kim
,
S.
, and
Moon
,
S. K.
,
2017
, “
Sustainable Platform Identification for Product Family Design
,”
J. Clean. Prod.
,
143
, pp.
567
581
.
48.
Csermely
,
P.
,
London
,
A.
,
Wu
,
L.-Y.
, and
Uzzi
,
B.
,
2013
, “
Structure and Dynamics of Core/Periphery Networks
,”
J. Complex Networks
,
1
(
2
), pp.
93
123
.
49.
Yan
,
B.
, and
Luo
,
J.
,
2019
, “
Multicores-Periphery Structure in Networks
,” e-print
arXiv:1605.03286
.https://arxiv.org/abs/1605.03286
50.
Borgatti
,
S. P.
, and
Everett
,
M. G.
,
1999
, “
Models of Core/Periphery Structures
,”
Soc. Networks
,
21
(
4
), pp.
375
395
.
51.
Colizza
,
V.
,
Flammini
,
A.
,
Serrano
,
M. A.
, and
Vespignani
,
A.
,
2006
, “
Detecting Rich-Club Ordering in Complex Networks
,”
Nature
,
2
(2), pp.
110
115
.
52.
Zhou
,
S.
, and
Mondragon
,
R. J.
,
2004
, “
The Rich-Club Phenomenon in the Internet Topology
,”
IEEE Commun. Lett.
,
8
(
3
), pp.
180
182
.
53.
Saavedra
,
S.
,
Reed-Tsochas
,
F.
, and
Uzzi
,
B.
,
2009
, “
A Simple Model of Bipartite Cooperation for Ecological and Organizational Networks
,”
Nature
,
457
(
7228
), pp.
463
466
.
54.
Saavedra
,
S.
,
Stouffer
,
D. B.
,
Uzzi
,
B.
, and
Bascompte
,
J.
,
2011
, “
Strong Contributors to Network Persistence Are the Most Vulnerable to Extinction
,”
Nature
,
478
(
7368
), pp.
233
235
.
55.
Bustos
,
S.
,
Gomez
,
C.
,
Hausmann
,
R.
, and
Hidalgo
,
C. A.
,
2012
, “
The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems
,”
PLoS One
,
7
(
11
), p.
e49393
.
56.
Supper
,
J.
,
Spangenberg
,
L.
,
Planatscher
,
H.
,
Dräger
,
A.
,
Schröder
,
A.
, and
Zell
,
A.
,
2009
, “
BowTieBuilder: Modeling Signal Transduction Pathways
,”
BMC Syst. Biol.
,
3
(1), p.
67
.
57.
Broder
,
A.
,
Kumar
,
R.
,
Maghoul
,
F.
,
Raghavan
,
P.
,
Rajagopalan
,
S.
,
Stata
,
R.
,
Tomkins
,
A.
, and
Wiener
,
J.
,
2000
, “
Graph Structure in the Web
,”
Comput. Networks
,
33
(
1–6
), pp.
309
320
.
58.
Kitano
,
H.
, and
Oda
,
K.
,
2006
, “
Robustness Trade-Offs and Host-Microbial Symbiosis in the Immune System
,”
Mol. Syst. Biol.
,
2
(1), pp.
1
10
.
59.
Herrmann
,
H. J.
,
Schneider
,
C. M.
,
Moreira
,
A. A.
,
Andrade
,
J. S.
, and
Havlin
,
S.
,
2011
, “
Onion-Like Network Topology Enhances Robustness Against Malicious Attacks
,”
J. Stat. Mech. Theory Exp.
,
2011
, p.
P01027
.
60.
Magee
,
C. L.
,
Ringo
,
J. D.
, and
Cunha
,
A. M.
,
2008
, “
Engineering Design and Product Development: A Focus of the MIT-Portugal Program
,”
Int. J. Engng Ed.
,
24
(
2
), pp.
336
344
.https://www.researchgate.net/publication/255636023_Engineering_Design_and_Product_Development_a_focus_of_the_MIT-Portugal_Programme
61.
Schneider
,
C. M.
,
Moreira
,
A. A.
,
Andrade
,
J. S.
,
Havlin
,
S.
, and
Herrmann
,
H. J.
,
2011
, “
Mitigation of Malicious Attacks on Network Observation
,”
Proc. Natl. Acad. Sci.
,
108
(
10
), pp.
3838
3841
.
62.
Collier
,
B.
, and
Kraut
,
R.
,
2012
, “
Leading the Collective: Social Capital and the Development of Leaders in Core-Periphery Organizations
,” Collective Intelligence Conference, Boston, MA, Apr. 18–20.
63.
Tieri
,
P.
,
Grignolio
,
A.
,
Zaikin
,
A.
,
Mishto
,
M.
,
Remondini
,
D.
,
Castellani
,
G. C.
, and
Franceschi
,
C.
,
2010
, “
Network, Degeneracy and Bow Tie. Integrating Paradigms and Architectures to Grasp the Complexity of the Immune System
,”
Theor. Biol. Med. Modell.
,
7
(
1
), pp.
1
16
.
64.
Opsahl
,
T.
,
Colizza
,
V.
,
Panzarasa
,
P.
, and
Ramasco
,
J. J.
,
2008
, “
Prominence and Control: The Weighted Rich-Club Effect
,”
Phys. Rev. Lett.
,
101
(
16
), p.
168702
.
65.
McAuley
,
J. J.
,
Da Fontoura Costa
,
L.
, and
Caetano
,
T. S.
,
2007
, “
Rich-Club Phenomenon Across Complex Network Hierarchies
,”
Appl. Phys. Lett.
,
91
(
8
), p.
084103
.
66.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
67.
Boyd
,
J.
,
Fitzgerald
,
W.
, and
Beck
,
R. J.
,
2007
, “
Computing Core/Periphery Structures and Permutation Tests for Social Relations Data
,”
Soc. Networks
,
28
(
2
), pp.
165
178
.
68.
Glover
,
F.
,
1989
, “
Tabu Search—Part I
,”
ORSA J. Comput.
,
2 1
(
3
), pp.
4
32
.
69.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Glob. Optim.
,
11
(
4
), pp.
341
359
.
70.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley Publishing Company
, Boston, MA.
71.
Holme
,
P.
,
2005
, “
Core-Periphery Organization of Complex Networks
,”
Phys. Rev. E: Stat. Nonlinear, Soft Matter Phys.
,
72
(
4
), p. 046111.
72.
Comrey
,
A. L.
,
1962
, “
The Minimum Residual Method of Factor Analysis
,”
Psychol. Rep.
,
11
(
1
), pp.
15
18
.
73.
Press
,
W. H.
,
1989
,
Numerical Recipes in Pascal: The Art of Scientific Computing
,
Cambridge University Press
, New York.
74.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.
75.
Rombach
,
M. P.
,
Porter
,
M. A.
,
Fowler
,
J. H.
, and
Mucha
,
P. J.
,
2012
, “
Core-Periphery Structure in Networks
,”
SIAM J. Appl. Math.
,
74
(
1
), pp.
167
190
.
76.
Gürbüz
,
F.
, and
Pardalos
,
P. M.
,
2012
, “
A Decision Making Process Application for the Slurry Production in Ceramics Via Fuzzy Cluster and Data Mining
,”
J. Ind. Manag. Optim.
,
8
(
2
), pp.
285
297
.
77.
Song
,
B.
, and
Luo
,
J.
,
2017
, “
Mining Patent Precedents for Data-Driven Design: The Case of Spherical Rolling Robots
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111420
.
78.
Yan
,
P.
,
Liu
,
D.
,
Wang
,
D.
, and
Ma
,
H.
,
2016
, “
Data-Driven Controller Design for General MIMO Nonlinear Systems Via Virtual Reference Feedback Tuning and Neural Networks
,”
Neurocomputing
,
171
, pp.
815
825
.
79.
Ma
,
J.
,
Kwak
,
M.
, and
Kim
,
H. M.
,
2012
, “
Pre-Life and End-of-Life Combined Profit Optimization With Predictive Product Lifecycle Design
,”
38th Design Automation Conference
, Chicago, IL, Aug. 12–15, pp. 1315–1327.
80.
Lei
,
N.
, and
Moon
,
S. K.
,
2015
, “
A Decision Support System for Market-Driven Product Positioning and Design
,”
Decis. Support Syst.
,
69
, pp.
82
91
.
81.
Ma
,
J.
, and
Kim
,
H. M.
,
2014
, “
Continuous Preference Trend Mining for Optimal Product Design With Multiple Profit Cycles
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061002
.
82.
Mun
,
D.
,
2011
, “
Knowledge-Based Part Similarity Measurement Utilizing Ontology and Multi-Criteria Decision Making Technique
,”
Adv. Eng. Inf.
,
25
(
2
), pp.
119
130
.
83.
Wilberg
,
J.
,
Lau
,
K.
,
Nützel
,
T.
,
Hollauer
,
C.
, and
Omer
,
M.
,
2018
, “
Development of a Catalogue Supporting Idea Generation for Internet of Things Use Cases
,”
15th International Design Conference
(
DESIGN 2018
), Dubrovnik, Croatia, May 21–24, pp.
1453
1464
.https://www.designsociety.org/publication/40550/DEVELOPMENT+OF+A+CATALOGUE+SUPPORTING+IDEA+GENERATION+FOR+INTERNET+OF+THINGS+USE+CASES
84.
Tucker
,
C. S.
, and
Kim
,
H. M.
,
2009
, “
Data-Driven Decision Tree Classification for Product Portfolio Design Optimization
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
041004
.
85.
Kusiak
,
A.
, and
Smith
,
M.
,
2007
, “
Data Mining in Design of Products and Production Systems
,”
Annu. Rev. Control
,
31
(
1
), pp.
147
156
.
86.
Mavridou
,
E.
,
Kehagias
,
D. D.
,
Tzovaras
,
D.
, and
Hassapis
,
G.
,
2013
, “
Mining Affective Needs of Automotive Industry Customers for Building a Mass-Customization Recommender System
,”
J. Intell. Manuf.
,
24
(
2
), pp.
251
265
.
87.
Jiao
,
Y.
, and
Yang
,
Y.
,
2018
, “
A Product Configuration Approach Based on Online Data
,”
J. Intell. Manuf.
, (epub).
88.
Peyyeti
,
S.
,
2016
, “Innovation Mining: A Framework for Identifying Components Worth Innovating in a System,” M.S thesis,
Rochester Institute of Technology
, Rochester, NY.https://scholarworks.rit.edu/cgi/viewcontent.cgi?referer=https://www.google.co.in/&httpsredir=1&article=10326&context=theses
89.
Kang
,
S. W.
, and
Tucker
,
C. S.
,
2018
, “
Exploring the Correlation Between New Function Attributes Mined From Different Product Domains and Market Sales
,”
Eng. Econ.
,
63
(
2
), pp.
113
142
.
90.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
91.
Borgatti
,
S. P.
,
Everett
,
M. G.
, and
Freeman
,
L.
,
2002
, “UCINET for Windows: Software for Social Network Analysis,”
Analytic Technologies
,
Harvard, MA
.
92.
Li
,
Z.
,
Harman
,
M.
, and
Hierons
,
R. M.
,
2007
, “
Search Algorithms for Regression Test Case Prioritization
,”
IEEE Trans. Software Eng.
,
33
(
4
), pp.
225
237
.
93.
Bicchi
,
A.
,
Balluchi
,
A.
,
Prattichizzo
,
D.
, and
Gorelli
,
A.
,
1997
, “
Introducing the ‘SPHERICLE’: An Experimental Testbed for Research and Teaching in Nonholonomy
,”
International Conference on Robotics and Automation
(
ICRA
), Albuquerque, NM, Apr. 20–25, pp.
2620
2625
.
94.
Bernstein
,
I. H.
, and
Wilson
,
A.
,
2017
, “
Self-Propelled Device With Actively Engaged Drive System
,” Sphero, Boulder, CO, U. S. Patent No.
9,766,620
.https://patents.google.com/patent/US9766620B2/en
95.
Kim
,
J.
,
Kwon
,
H.
, and
Lee
,
J.
,
2009
, “
A Rolling Robot: Design and Implementation
,”
Seventh Asian Control Conference
(
ASCC
), Hong Kong, China, Aug. 27–19, pp.
1474
1479
.https://ieeexplore.ieee.org/document/5276168
96.
Yoon
,
J. C.
,
Ahn
,
S. S.
, and
Lee
,
Y. J.
,
2011
, “
Spherical Robot With New Type of Two-Pendulum Driving Mechanism
,”
15th International Conference on Intelligent Engineering Systems
(
INES
), Poprad, Slovakia, June 23–25, pp.
275
279
.
97.
Bhattacharya
,
S.
, and
Agrawal
,
S. K.
,
2000
, “
Design, Experiments and Motion Planning of a Spherical Rolling Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, April 24–28, pp.
1207
1212
.
98.
Mukherjea
,
S.
,
Bamba
,
B.
, and
Kankar
,
P.
,
2005
, “
Information Retrieval and Knowledge Discovery Utilizing a BioMedical Patent Semantic Web
,”
IEEE Trans. Knowl. Data Eng.
,
17
(
8
), pp.
1099
1110
.
99.
Hajos
,
G. A.
,
Jones
,
J. A.
,
Behar
,
A.
, and
Dodd
,
M.
,
2018
, “
An Overview of Wind-Driven Rovers for Planetary Exploration
,”
AIAA
Paper No. 2005-244.
100.
Halme
,
A.
,
Suomela
,
J.
,
Schönberg
,
T.
, and
Wang
,
Y.
,
1996
, “
A Spherical Mobile Micro-Robot for Scientific Applications
,”
ESA Workshop on Advanced Space Technologies for Robot Applications
, Noordwijk, The Netherlands, Nov. 6–7.https://www.researchgate.net/publication/268324948_A_SPHERICAL_MOBILE_MICRO-ROBOT_FOR_SCIENTIFIC_APPLICATIONS
101.
Wu
,
F.
,
Marechal
,
L.
,
Vibhute
,
A.
,
Foong
,
S.
,
Soh
,
G. S.
, and
Wood
,
K. L.
,
2016
, “
A Compact Magnetic Directional Proximity Sensor for Spherical Robots
,”
IEEE International Conference on Advanced Intelligent Mechatronics
(
AIM
), Banff, AB, Canada, July 12–15, pp.
1258
1264
.
102.
Wu
,
F.
,
Vibhute
,
A.
,
Soh
,
G. S.
,
Wood
,
K. L.
, and
Foong
,
S.
,
2017
, “
A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots
,”
Sensors (Basel)
,
17
(
6
), p.
E1231
.
103.
Niu
,
X.
,
Suherlan
,
A. P.
,
Soh
,
G. S.
,
Foong
,
S.
,
Wood
,
K.
, and
Otto
,
K.
,
2014
, “
Mechanical Development and Control of a Miniature Nonholonomic Spherical Rolling Robot
,” 13th International Conference on Control Automation Robotics and Vision (
ICARCV
), Singapore, Dec. 10–12, pp.
1923
1928
.
104.
Ajay
,
V. A.
,
Suherlan
,
A. P.
,
Soh
,
G. S.
,
Foong
,
S.
,
Wood
,
K.
, and
Otto
,
K.
,
2015
, “
Localization and Trajectory Tracking of an Autonomous
,”
ASME
Paper No. DETC2015-47223.
105.
Chowdhury
,
A. R.
,
Soh
,
G. S.
,
Foong
,
S. H.
, and
Wood
,
K. L.
,
2017
, “
Experiments in Second Order Sliding Mode Control of a CPG Based Spherical Robot
,”
20th IFAC World Congress
, Toulouse, France, July 9–14, pp.
2365
2372
.
106.
Pahl
,
G.
, and
Beitz
,
W.
,
1996
,
Engineering Design: A Systematic Approach
,
Springer
, London.
107.
Jiao
,
J.
,
Simpson
,
T. W.
, and
Siddique
,
Z.
,
2007
, “
Product Family Design and Platform-Based Product Development: A State-of-the-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
.
108.
Erens
,
F.
, and
Verhulst
,
K.
,
1997
, “
Architectures for Product Families
,”
Comput. Ind.
,
33
(
2–3
), pp.
165
178
.
109.
Erixon
,
G.
, and
Ostgren
,
B.
,
1993
, “
Synthesis and Evaluation Tool for Modular Designs
,”
International Conference on Engineering Design
, Hague, The Netherlands, Aug. 17–19, pp.
898
905
.
110.
Dahmus
,
J. B.
,
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
,
2001
, “
Modular Product Architecture
,”
Des. Stud.
,
22
(
5
), pp.
409
424
.
111.
Altshuller
,
G. S.
, and
Shapiro
,
R. B.
,
1956
, “
О Психологии изобретательского творчества (On the Psychology of Inventive Creation)
,”
Вопросы Психологии (The Psychol. Issues)
,
6
, pp.
37
49
(in Russian).
112.
Fu
,
K.
,
Murphy
,
J.
,
Yang
,
M.
,
Otto
,
K.
,
Jensen
,
D.
, and
Wood
,
K.
,
2014
, “
Design-by-Analogy: Experimental Evaluation of a Functional Analogy Search Methodology for Concept Generation Improvement
,”
Res. Eng. Des.
,
26
(
1
), pp.
77
95
.
You do not currently have access to this content.