Abstract

This work introduces a cluster-based structural optimization (CBSO) method for the design of categorical multimaterial structures subjected to crushing, dynamic loading. The proposed method consists of three steps: conceptual design generation, design clustering, and Bayesian optimization. In the first step, a conceptual design is generated using the hybrid cellular automaton (HCA) algorithm. In the second step, threshold-based cluster analysis yields a lower-dimensional design. Here, a cluster validity index for structural optimization is introduced in order to qualitatively evaluate the clustered design. In the third step, the optimal design is obtained through Bayesian optimization, minimizing a constrained expected improvement function. This function allows to impose soft constraints by properly redefining the expected improvement based on the maximum constraint violation. The Bayesian optimization algorithm implemented in this work has the ability to search over (i) a real design space for sizing optimization, (ii) a categorical design space for material selection, or (iii) a mixed design space for concurrent sizing optimization and material selection. With the proposed method, materials are optimally selected based on multiple attributes and multiple objectives without the need for material ranking. The effectiveness of this approach is demonstrated with the design for crashworthiness of multimaterial plates and thin-walled structures.

References

1.
El Mogahzy
,
Y.
,
2008
,
Engineering Textiles: Integrating the Design and Manufacture of Textile Products
,
Elsevier
,
New York
.
2.
Jahan
,
A.
,
Ismail
,
M.
,
Sapuan
,
S.
, and
Mustapha
,
F.
,
2010
, “
Material Screening and Choosing Methods—A Review
,”
Mater. Des.
,
31
(
2
), pp.
696
705
. 10.1016/j.matdes.2009.08.013
3.
Ashby
,
M.
,
Brechet
,
Y.
,
Cebon
,
D.
, and
Salvo
,
L.
,
2004
, “
Selection Strategies for Materials and Processes
,”
Mater. Des.
,
25
(
1
), pp.
51
67
. 10.1016/S0261-3069(03)00159-6
4.
Chiner
,
M.
,
1988
, “
Planning of Expert Systems for Materials Selection
,”
Mater. Des.
,
9
(
4
), pp.
195
203
. 10.1016/0261-3069(88)90031-3
5.
Farag
,
M. M.
,
2006
, “Quantitative Methods of Materials Selection,”
Mechanical Engineers' Handbook
,
M.
Kutz
, ed.,
Wiley
,
New Jersey
, p.
466
.
6.
Jalham
,
I. S.
,
2006
, “
Decision-Making Integrated Information Technology (IIT) Approach for Material Selection
,”
Int. J. Comput. Appl. Technol.
,
25
(
1
), pp.
65
71
. 10.1504/IJCAT.2006.008669
7.
Van Kesteren
,
I. E. H.
,
Kandachar
,
P. V.
, and
Stappers
,
P. J.
,
2006
, “
Activities in Selecting Materials by Product Designers
,”
International Conference on Advanced Design and Manufacture
,
Harbin, China
,
Jan. 8–10
.
8.
Ashby
,
M.
,
2011
,
Materials Selection in Mechanical Design
, 4th ed.,
Elsevier Ltd
,
New York
.
9.
Ermolaeva
,
N. S.
,
Kaveline
,
K. G.
, and
Spoormaker
,
J. L.
,
2002
, “
Materials Selection Combined With Optimal Structural Design: Concept and Some Results
,”
Mater. Des.
,
23
(
5
), pp.
459
470
. 10.1016/S0261-3069(02)00019-5
10.
Jia
,
R.
,
Hu
,
J.
,
Xiong
,
X.
, and
Zhang
,
L.
,
2014
, “
Shape Optimization Design and Material Selection for a Fitness Equipment
,”
ASEE 2014 Zone I Conference
,
Bridgeport, CT
,
Apr. 3–5
.
11.
Edwards
,
K.
,
2005
, “
Selecting Materials for Optimum Use in Engineering Components
,”
Mater. Des.
,
26
(
5
), pp.
469
473
. 10.1016/j.matdes.2004.07.004
12.
Tang
,
X.
,
Bassir
,
D. H.
, and
Zhang
,
W.
,
2011
, “
Shape, Sizing Optimization and Material Selection Based on Mixed Variables and Genetic Algorithm
,”
Optim. Eng.
,
12
(
1–2
), pp.
111
128
. 10.1007/s11081-010-9125-z
13.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Method and Applications
,
Springer
,
New York
.
14.
Blasques
,
J. P.
,
2014
, “
Multi-Material Topology Optimization of Laminated Composite Beams With Eigenfrequency Constraints
,”
Compos. Struct.
,
111
, pp.
45
55
. 10.1016/j.compstruct.2013.12.021
15.
Blasques
,
J. P.
, and
Stolpe
,
M.
,
2012
, “
Multi-Material Topology Optimization of Laminated Composite Beam Cross Sections
,”
Compos. Struct.
,
94
(
11
), pp.
3278
3289
. 10.1016/j.compstruct.2012.05.002
16.
Hvejsel
,
C. F.
, and
Lund
,
E.
,
2011
, “
Material Interpolation Schemes for Unified Topology and Multi-Material Optimization
,”
Struct. Multidiscipl. Optim.
,
43
(
6
), pp.
811
825
. 10.1007/s00158-011-0625-z
17.
James
,
K. A.
,
2018
, “
Multiphase Topology Design With Optimal Material Selection Using an Inverse P-Norm Function
,”
Int. J. Numer. Methods Eng.
,
114
(
9
), pp.
999
1017
. 10.1002/nme.5774
18.
Tavakoli
,
R.
,
2014
, “
Multimaterial Topology Optimization by Volume Constrained Allen-Cahn System and Regularized Projected Steepest Descent Method
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
534
565
. 10.1016/j.cma.2014.04.005
19.
Zuo
,
W.
, and
Saitou
,
K.
,
2017
, “
Multi-Material Topology Optimization Using Ordered Simp Interpolation
,”
Struct. Multidiscipl. Optim.
,
55
(
2
), pp.
477
491
. 10.1007/s00158-016-1513-3
20.
Cui
,
M.
,
Chen
,
H.
, and
Zhou
,
J.
,
2016
, “
A Level-Set Based Multi-Material Topology Optimization Method Using a Reaction Diffusion Equation
,”
Comput. Aided Des.
,
73
, pp.
41
52
. 10.1016/j.cad.2015.12.002
21.
Faure
,
A.
,
Michailidis
,
G.
,
Parry
,
G.
,
Vermaak
,
N.
, and
Estevez
,
R.
,
2017
, “
Design of Thermoelastic Multi-Material Structures With Graded Interfaces Using Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
56
(
4
), pp.
823
837
. 10.1007/s00158-017-1688-2
22.
Liu
,
P.
,
Luo
,
Y.
, and
Kang
,
Z.
,
2016
, “
Multi-Material Topology Optimization Considering Interface Behavior Via XFEM and Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
308
, pp.
113
133
. 10.1016/j.cma.2016.05.016
23.
Wang
,
M. Y.
, and
Wang
,
X.
,
2004
, “
“Color” Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6–8
), pp.
469
496
. 10.1016/j.cma.2003.10.008
24.
Wang
,
Y.
,
Luo
,
Z.
,
Kang
,
Z.
, and
Zhang
,
N.
,
2015
, “
A Multi-Material Level Set-Based Topology and Shape Optimization Method
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
1570
1586
. 10.1016/j.cma.2014.11.002
25.
Wang
,
M. Y.
, and
Zhou
,
S.
,
2005
, “
Synthesis of Shape and Topology of Multi-Material Structures With a Phase-Field Method
,”
J. Comput. Aided Mater. Des.
,
11
(
2–3
), pp.
117
138
. 10.1007/s10820-005-3169-y
26.
Zhou
,
S.
, and
Wang
,
M.
,
2006
, “
3D Multi-Material Structural Topology Optimization With the Generalized Cahn-Hilliard Equations
,”
Comput. Model. Eng. Sci.
,
16
(
2
), pp.
83
102
.
27.
Rozvany
,
G.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
,
4
(
34
), pp.
250
252
. 10.1007/BF01742754
28.
Stegmann
,
J.
, and
Lund
,
E.
,
2005
, “
Discrete Material Optimization of General Composite Shell Structures
,”
Int. J. Numer. Methods Eng.
,
62
(
14
), pp.
2009
2027
. 10.1002/nme.1259
29.
Zhang
,
W.
,
Song
,
J.
,
Zhou
,
J.
,
Du
,
Z.
,
Zhu
,
Y.
,
Sun
,
Z.
, and
Guo
,
X.
,
2018
, “
Topology Optimization With Multiple Materials Via Moving Morphable Component (MMC) Method
,”
Int. J. Numer. Methods Eng.
,
113
(
11
), pp.
1653
1675
. 10.1002/nme.5714
30.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J.
,
2018
, “
Topology Optimization of Structures Made of Discrete Geometric Components With Different Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111401
. 10.1115/1.4040624
31.
Huang
,
X.
, and
Xie
,
M.
,
2010
,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
John Wiley & Sons
,
Chichester
.
32.
Huang
,
X.
, and
Xie
,
Y. M.
,
2009
, “
Bi-directional Evolutionary Topology Optimization of Continuum Structures With One or Multiple Materials
,”
Comput. Mech.
,
43
(
3
), pp.
393
401
. 10.1007/s00466-008-0312-0
33.
Hui
,
M.
,
Shi
,
D.
,
Gea
,
H. C.
, and
Teng
,
X.
,
2017
, “
Stiffness Optimization of Multi-Material Composite Structure Under Dependent Load
,”
Int. J. Interactive Des. Manuf.
,
12
(
2
), pp.
717
727
. 10.1007/s12008-017-0407-y
34.
Patel
,
N.
,
Kang
,
B.
,
Renaud
,
J.
, and
Tovar
,
A.
,
2009
, “
Crashworthiness Design Using Topology Optimization
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061013
. 10.1115/1.3116256
35.
Tovar
,
A.
,
Patel
,
N. M.
,
Niebur
,
G. L.
,
Sen
,
M.
, and
Renaud
,
J. E.
,
2006
, “
Topology Optimization Using a Hybrid Cellular Automation Method With Local Control Rules
,”
J. Mech. Des., Trans. ASME
,
128
(
6
), pp.
1205
1216
. 10.1115/1.2336251
36.
Tovar
,
A.
,
Patel
,
N. M.
,
Kaushik
,
A. K.
, and
Renaud
,
J. E.
,
2007
, “
Optimality Conditions of the Hybrid Cellular Automata for Structural Optimization
,”
AIAA J.
,
45
(
3
), pp.
673
683
. 10.2514/1.20184
37.
Goetz
,
J.
,
Tan
,
H.
,
Renaud
,
J.
, and
Tovar
,
A.
,
2012
, “
Two-Material Optimization of Plate Armour for Blast Mitigation Using Hybrid Cellular Automata
,”
Eng. Optim.
,
44
(
8
), pp.
985
1005
. 10.1080/0305215X.2011.624182
38.
Liu
,
K.
,
Detwiler
,
D.
, and
Tovar
,
A.
,
2017
, “
Optimal Design of Nonlinear Multimaterial Structures for Crashworthiness Using Cluster Analysis
,”
ASME J. Mech. Des.
,
139
(
10
), p.
101401
. 10.1115/1.4037620
39.
Liu
,
K.
,
Detwiler
,
D.
, and
Tovar
,
A.
,
2018
, “
Cluster-Based Optimization of Cellular Materials and Structures for Crashworthiness
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111412
. 10.1115/1.4040960
40.
Marler
,
R.
, and
Arora
,
J.
,
2010
, “
The Weighted Sum Method for Multi-Objective Optimization: New Insights
,”
Struct. Multidiscipl. Optim.
,
41
(
6
), pp.
853
862
. 10.1007/s00158-009-0460-7
41.
Witowski
,
K.
,
Erhart
,
A.
,
Schumacher
,
P.
, and
Mullerschon
,
H.
,
2012
, “
Topology Optimization for Crash
,”
12th International LS-DYNA Conference
,
Detroit, MI
,
June 3–5
.
42.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscipl. Optim.
,
19
(
1
), pp.
36
49
. 10.1007/s001580050084
43.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
(
4
), pp.
495
526
. 10.1080/08905459708945415
44.
Liu
,
K.
,
Tovar
,
A.
, and
Detwiler
,
D.
,
2014
, “
Thin-Walled Component Design Optimization for Crashworthiness Using Principles of Compliant Mechanism Synthesis and Kriging Sequential Approximation
,”
4th International Conference on Engineering Optimization
,
Lisbon, Portugal
,
Sept. 8–11
.
45.
Holmberg
,
E.
,
Torstenfelt
,
B.
, and
Klarbring
,
A.
,
2013
, “
Stress Constrained Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
48
(
1
), pp.
33
47
. 10.1007/s00158-012-0880-7
46.
Aulig
,
N.
, and
Olhofer
,
M.
,
2016
, “
State-Based Representation for Structural Topology Optimization and Application to Crashworthiness
,”
2016 IEEE Congress on Evolutionary Computation (CEC)
,
Vancouver, BC, Canada
,
July 24–29
, pp.
1642
1649
. http://dx.doi.org/10.1109/CEC.2016.7743985
47.
Ishikawa
,
T.
,
Nakayama
,
K.
,
Kurita
,
N.
, and
Dawson
,
F. P.
,
2014
, “
Optimization of Rotor Topology in Pm Synchronous Motors by Genetic Algorithm Considering Cluster of Materials and Cleaning Procedure
,”
IEEE Trans. Magn.
,
50
(
2
), pp.
637
640
. 10.1109/TMAG.2013.2282365
48.
Ishikawa
,
T.
,
Mizuno
,
S.
, and
Krita
,
N.
,
2017
, “
Topology Optimization Method for Asymmetrical Rotor Using Cluster and Cleaning Procedure
,”
IEEE Trans. Magn.
,
53
(
6
), pp.
1
4
. 10.1109/TMAG.2017.2665441
49.
Dunn
,
J. C.
,
1974
, “
Well-Separated Clusters and Optimal Fuzzy Partitions
,”
J. Cybern.
,
4
(
1
), pp.
95
104
. 10.1080/01969727408546059
50.
Davies
,
D. L.
, and
Bouldin
,
D. W.
,
1979
, “
A Cluster Separation Measure
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
PAMI-1
(
2
), pp.
224
227
. 10.1109/TPAMI.1979.4766909
51.
Sharma
,
S.
,
1995
,
Applied Multivariate Techniques
,
Wiley
,
New York
.
52.
Arbelaitz
,
O.
,
Gurrutxaga
,
I.
,
Muguerza
,
J.
,
Pérez
,
J. M.
, and
Perona
,
I.
,
2013
, “
An Extensive Comparative Study of Cluster Validity Indices
,”
Pattern Recognit.
,
46
(
1
), pp.
243
256
. 10.1016/j.patcog.2012.07.021
53.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
(
3
), pp.
379
423
. 10.1002/j.1538-7305.1948.tb01338.x
54.
Bandi
,
P.
,
Schmiedeler
,
J. P.
, and
Tovar
,
A.
,
2013
, “
Design of Crashworthy Structures With Controlled Energy Absorption in the Hybrid Cellular Automaton Framework
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091002
. 10.1115/1.4024722
55.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaard
,
J.
,
2002
, “
‘DACE’–A ‘Matlab’ Kriging Toolbox
,” Technical Report,
Informatics and Mathematical Modelling
,
Technical University of Denmark
.
56.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Models
,
John Wiley & Sons
,
Chichester
.
57.
Hutter
,
F.
,
Hoos
,
H. H.
, and
Leyton-Brown
,
K.
,
2011
, “Sequential Model-Based Optimization for General Algorithm Configuration,”
Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science
, Vol.
6683
,
C. A. C.
Coello
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
507
523
. 10.1007/978-3-642-25566-3_40
58.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
1995
,
Response Surface Methodology. Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons
,
New York
.
59.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
60.
Tavakoli
,
R.
, and
Mohseni
,
S. M.
,
2014
, “
Alternating Active-Phase Algorithm for Multimaterial Topology Optimization Problems: A 115-Line MATLAB Implementation
,”
Struct. Multidiscipl. Optim.
,
49
(
4
), pp.
621
642
. 10.1007/s00158-013-0999-1
61.
Bandi
,
P.
,
Detwiler
,
D.
,
Schmiedeler
,
J. P.
, and
Tovar
,
A.
,
2015
, “
Design of Progressively Folding Thin-Walled Tubular Components Using Compliant Mechanism Synthesis
,”
Thin Walled Struct.
,
95
, pp.
208
220
. 10.1016/j.tws.2015.06.010
You do not currently have access to this content.