Abstract

Computational methods for kinematic synthesis of mechanisms for motion generation problems require input in the form of precision positions. Given the highly nonlinear nature of the problem, solutions to these methods are overly sensitive to the input—a small perturbation to even a single position of a given motion can change the topology and dimensions of the synthesized mechanisms drastically. Thus, the synthesis becomes a blind iterative process of maneuvering precision positions in the hope of finding good solutions. In this paper, we present a deep-learning-based framework which manages the uncertain user input and provides the user with a higher level control of the design process. The framework also imputes the input with missing information required by the computational algorithms. The approach starts by learning the probability distribution of possible linkage parameters with a deep generative modeling technique, called variational auto encoder (VAE). This facilitates capturing salient features of the user input and relating them with possible linkage parameters. Then, input samples resembling the inferred salient features are generated and fed to the computational methods of kinematic synthesis. The framework postprocesses the solutions and presents the concepts to the user along with a handle to visualize the variants of each concept. We define this approach as variational synthesis of mechanisms. In addition, we also present an alternate end-to-end deep neural network architecture for variational synthesis of linkages. This end-to-end architecture is a conditional-VAE, which approximates the conditional distribution of linkage parameters with respect to a coupler trajectory distribution. The outcome is a probability distribution of kinematic linkages for an unknown coupler path or motion. This framework functions as a bridge between the current state of the art theoretical and computational kinematic methods and machine learning to enable designers to create practical mechanism design solutions.

References

1.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, Vol.
11
,
Springer
,
Berlin
.
2.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
1997
,
Advanced Mechanism Design: Analysis and Synthesis
, Vol.
2
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Hunt
,
K.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford
.
4.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
5.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
,
1978
,
Kinematics and Mechanism Design
,
John Wiley and Sons
,
New York
.
6.
Lohse
,
P.
,
2013
,
Getriebesynthese: Bewegungsablufe ebener Koppelmechanismen
,
Springer-Verlag
,
Berlin
.
7.
Chase
,
T.
, and
Mirth
,
J.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
. 10.1115/1.2919181
8.
Ge
,
Q. J.
,
Purwar
,
A.
,
Zhao
,
P.
, and
Deshpande
,
S.
,
2016
, “
A Task Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of g-Manifolds
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031011
. 10.1115/1.4035528
9.
Deshpande
,
S.
, and
Purwar
,
A.
,
2017
, “
A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem
,”
ASME J. Mech. Robot.
,
9
(
6
), p.
061005
. 10.1115/1.4037801
10.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Auto-Encoding Variational Bayes
,”
Comput. Res. Repository
, e-print arXiv:1312.6114.
11.
Vasiliu
,
A.
, and
Yannou
,
B.
,
2001
, “
Dimensional Synthesis of Planar Mechanisms Using Neural Networks: Application to Path Generator Linkages
,”
Mech. Mach. Theory
,
36
(
2
), pp.
299
310
. 10.1016/S0094-114X(00)00037-9
12.
Khan
,
N.
,
Ullah
,
I.
, and
Al-Grafi
,
M.
,
2015
, “
Dimensional Synthesis of Mechanical Linkages Using Artificial Neural Networks and Fourier Descriptors
,”
Mech. Sci.
,
6
(
1
), pp.
29
34
. 10.5194/ms-6-29-2015
13.
Galan-Marin
,
G.
,
Alonso
,
F. J.
, and
Del Castillo
,
J. M.
,
2009
, “
Shape Optimization for Path Synthesis of Crank-Rocker Mechanisms Using a Wavelet-Based Neural Network
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1132
1143
. 10.1016/j.mechmachtheory.2008.09.006
14.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021004
. 10.1115/1.4042325
15.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
504
510
. 10.1115/1.2826396
16.
Wu
,
J.
,
Ge
,
Q. J.
,
Gao
,
F.
, and
Guo
,
W. Z.
,
2011
, “
On the Extension of a Fourier Descriptor Based Method for Planar Four-Bar Linkage Synthesis for Generation of Open and Closed Paths
,”
J. Mech. Robot. Trans. ASME
,
3
(
3
), p.
031002
. 10.1115/1.4004227
17.
Li
,
X.
,
Wu
,
J.
, and
Ge
,
Q. J.
,
2016
, “
A Fourier Descriptor-Based Approach to Design Space Decomposition for Planar Motion Approximation
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064501
. 10.1115/1.4033528
18.
Sharma
,
S.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2019
, “
An Optimal Parametrization Scheme for Path Generation Using Fourier Descriptors for Four-Bar Mechanism Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
014501
. 10.1115/1.4041566
19.
Sharma
,
S.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2019
, “
A Motion Synthesis Approach to Solving Alt-burmester Problem by Exploiting Fourier Descriptor Relationship Between Path and Orientation Data
,”
ASME J. Mech. Robot.
,
11
(
1
), p.
011016
. 10.1115/1.4042054
20.
Purwar
,
A.
,
Deshpande
,
S.
, and
Ge
,
Q. J.
,
2017
, “
Motiongen: Interactive Design and Editing of Planar Four-Bar Motions Via a Unified Framework for Generating Pose- and Geometric-Constraints
,”
ASME J. Mech. Robot.
,
9
(
2
), p.
024504
. 10.1115/1.4035899
21.
Blei
,
D. M.
,
Kucukelbir
,
A.
, and
McAuliffe
,
J. D.
,
2017
, “
Variational Inference: A Review for Statisticians
,”
J. Am. Stat. Assoc.
,
112
(
518
), pp.
859
877
. 10.1080/01621459.2017.1285773
22.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
. 10.1214/aoms/1177729694
23.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: A Simple Way to Prevent Neural Networks From Overfitting
,”
J. Mach. Learn. Res.
,
15
, pp.
1929
1958
.
24.
Radford
,
A.
,
Metz
,
L.
, and
Chintala
,
S.
,
2016
, “
Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks
,”
Comput. Res. Repository
, e-print arXiv:1511.06434.
25.
Lloyd
,
S.
,
1982
, “
Least Squares Quantization in PCM
,”
IEEE Trans. Inform. Theory
,
28
(
2
), pp.
129
137
. 10.1109/TIT.1982.1056489
26.
Song
,
C.
,
Liu
,
F.
,
Huang
,
Y.
,
Wang
,
L.
, and
Tan
,
T.
,
2013
, “Auto-Encoder Based Data Clustering,”
Iberoamerican Congress on Pattern Recognition
,
Springer
,
Berlin
, pp.
117
124
.
You do not currently have access to this content.