Abstract

This paper proposes a data-driven methodology to automatically identify product usage contexts from online customer reviews. Product usage context is one of the factors that affect product design, consumer behavior, and consumer satisfaction. The previous works identify the usage contexts using the survey-based method or subjectively determine them. The proposed methodology, on the other hand, uses machine learning and Natural Language Processing tools to identify and cluster usage contexts from a large volume of customer reviews. Furthermore, aspect sentiment analysis is applied to capture the sentiment toward a particular usage context in a sentence. The methodology is implemented to two data sets of products, i.e., laptop and tablet. The result shows that the methodology is able to capture relevant product usage contexts and cluster bigrams that refer to similar usage context. The aspect sentiment analysis enables the observation of a product’s position with respect to its competitors for a particular usage context. For a product designer, the observation may indicate a requirement to improve the product. It may also indicate a possible market opportunity in a usage context in which most of the current products are perceived negatively by customers. Finally, it is shown that overall rating might not be a strong indicator for representing customer sentiment toward a particular usage context, due to the moderate linear correlation for most of the usage contexts in the case study.

References

1.
Green
,
M. G.
,
Rajan
,
P. K. P.
, and
Wood
,
K. L.
,
2004
, “
Product Usage Context: Improving Customer Needs Gathering and Design Target Setting
,”
ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
393
403
. 10.1115/detc2004-57498
2.
Green
,
M. G.
,
Tan
,
J.
,
Linsey
,
J. S.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2005
, “
Effects of Product Usage Context on Consumer Product Preferences
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, pp.
171
185
. 10.1115/detc2005-85438
3.
Kanis
,
H.
,
1998
, “
Usage Centred Research for Everyday Product Design
,”
Appl. Ergonomics
,
29
(
1
), pp.
75
82
. 10.1016/S0003-6870(97)00028-8
4.
Belk
,
R. W.
,
1975
, “
Situational Variables and Consumer Behavior
,”
J. Consumer Res.
,
2
(
3
), pp.
157
164
. 10.1086/jcr.1975.2.issue-3
5.
Ram
,
S.
, and
Jung
,
H.-S.
,
1991
, “
How Product Usage Influences Consumer Satisfaction
,”
Mark. Lett.
,
2
(
4
), pp.
403
411
. 10.1007/BF00664226
6.
He
,
L.
,
Chen
,
W.
,
Hoyle
,
C.
, and
Yannou
,
B.
,
2012
, “
Choice Modeling for Usage Context-Based Design
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031007
. 10.1115/1.4005860
7.
Ratneshwar
,
S.
, and
Shocker
,
A. D.
,
1991
, “
Substitution in Use and the Role of Usage Context in Product Category Structures
,”
J. Mark. Res.
,
28
(
3
), pp.
281
295
. 10.1177/002224379102800303
8.
Green
,
M. G.
,
Linsey
,
J. S.
,
Seepersad
,
C. C.
,
Wood
,
K. L.
, and
Jensen
,
D. J.
,
2006
, “
Frontier Design: A Product Usage Context Method
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
, pp.
99
113
. 10.1115/detc2006-99608
9.
Lim
,
S.
, and
Tucker
,
C.
,
2017
, “
Mitigating Online Product Rating Biases Through the Discovery of Optimistic, Pessimistic, and Realistic Reviewers
,”
J. Mech. Des. – Trans. ASME
,
139
(
11
), p.
1114091
. 10.1115/1.4037612
10.
Jiang
,
H.
,
Kwong
,
C. K.
, and
Yung
,
K. L.
,
2017
, “
Predicting Future Importance of Product Features Based on Online Customer Reviews
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111413
. 10.1115/1.4037348
11.
Decker
,
R.
, and
Trusov
,
M.
,
2010
, “
Estimating Aggregate Consumer Preferences From Online Product Reviews
,”
Int. J. Res. Mark.
,
27
(
4
), pp.
293
307
. 10.1016/j.ijresmar.2010.09.001
12.
LaFleur
,
R. S.
,
1992
, “
Principal Engineering Design Questions
,”
Res. Eng. Des.
,
4
(
2
), pp.
89
100
. 10.1007/BF01580147
13.
Ram
,
S.
, and
Jung
,
H.-S.
,
1990
, “
The Conceptualization and Measurement of Product Usage
,”
J. Acad. Mark. Sci.
,
18
(
1
), pp.
67
76
. 10.1007/BF02729763
14.
Ghosh
,
D.
,
Olewnik
,
A.
, and
Lewis
,
K.
,
2017
, “
Application of Feature-Learning Methods Toward Product Usage Context Identification and Comfort Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011004
. 10.1115/1.4037435
15.
Zhou
,
F.
,
Jiao
,
R. J.
, and
Linsey
,
J. S.
,
2015
, “
Latent Customer Needs Elicitation by Use Case Analogical Reasoning From Sentiment Analysis of Online Product Reviews
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071401
. 10.1115/1.4030159
16.
Lim
,
S.
, and
Tucker
,
C. S.
,
2016
, “
A Bayesian Sampling Method for Product Feature Extraction From Large-Scale Textual Data
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061403
. 10.1115/1.4033238
17.
Shi
,
F.
,
Chen
,
L.
,
Han
,
J.
, and
Childs
,
P.
,
2017
, “
A Data-Driven Text Mining and Semantic Network Analysis for Design Information Retrieval
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111402
. 10.1115/1.4037649
18.
Zhang
,
R.
, and
Tran
,
T.
,
2011
, “
An Information Gain-Based Approach for Recommending Useful Product Reviews
,”
Knowledge Inf. Syst.
,
26
(
3
), pp.
419
434
. 10.1007/s10115-010-0287-y
19.
Zheng
,
X.
,
Zhu
,
S.
, and
Lin
,
Z.
,
2013
, “
Capturing the Essence of Word-of-Mouth for Social Commerce: Assessing the Quality of Online E-commerce Reviews by a Semi-Supervised Approach
,”
Decision Support Syst.
,
56
, pp.
211
222
. 10.1016/j.dss.2013.06.002
20.
Qi
,
J.
,
Zhang
,
Z.
,
Jeon
,
S.
, and
Zhou
,
Y.
,
2016
, “
Mining Customer Requirements From Online Reviews: A Product Improvement Perspective
,”
Inf. Manage.
,
53
(
8
), pp.
951
963
. 10.1016/j.im.2016.06.002
21.
Zhang
,
Z.
,
Liu
,
L.
,
Wei
,
W.
,
Tao
,
F.
,
Li
,
T.
, and
Liu
,
A.
,
2017
, “
A Systematic Function Recommendation Process for Data-Driven Product and Service Design
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111404
. 10.1115/1.4037610
22.
Suryadi
,
D.
, and
Kim
,
H.
,
2018
, “
A Systematic Methodology Based on Word Embedding for Identifying the Relation Between Online Customer Reviews and Sales Rank
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121403
. 10.1115/1.4040913
23.
Chiu
,
M.-C.
, and
Lin
,
K.-Z.
,
2018
, “
Utilizing Text Mining and Kansei Engineering to Support Data-Driven Design Automation At Conceptual Design Stage
,”
Adv. Eng. Inf.
,
38
, pp.
826
839
. 10.1016/j.aei.2018.11.002
24.
Jin
,
J.
,
Liu
,
Y.
,
Ji
,
P.
, and
Kwong
,
C. K.
,
2018
, “
Review on Recent Advances in Information Mining From Big Consumer Opinion Data for Product Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
010801
. 10.1115/1.4041087
25.
Yang
,
B.
,
Liu
,
Y.
,
Liang
,
Y.
, and
Tang
,
M.
,
2019
, “
Exploiting User Experience From Online Customer Reviews for Product Design
,”
Int. J. Inf. Manage.
,
46
, pp.
173
186
. 10.1016/j.ijinfomgt.2018.12.006
26.
Liu
,
B.
, and
Zhang
,
L.
,
2012
,
A Survey of Opinion Mining and Sentiment Analysis
,
Springer US
,
Boston, MA
, pp.
415
463
.
27.
Cambria
,
E.
,
Poria
,
S.
,
Gelbukh
,
A.
, and
Thelwall
,
M.
,
2017
, “
Sentiment Analysis is a Big Suitcase
,”
IEEE Intell. Syst.
,
32
(
6
), pp.
74
80
. 10.1109/MIS.2017.4531228
28.
He
,
R.
,
Lee
,
W. S.
,
Ng
,
H. T.
, and
Dahlmeier
,
D.
,
2018
, “
Effective Attention Modeling for Aspect-Level Sentiment Classification
,”
Proceedings of the 27th International Conference on Computational Linguistics, Association for Computational Linguistics
,
Santa Fe, NM
,
Aug. 20–26
, pp.
1121
1131
. 10.18653/v1/p18-2092
29.
He
,
R.
,
Lee
,
W. S.
,
Ng
,
H. T.
, and
Dahlmeier
,
D.
,
2018
, “
Exploiting Document Knowledge for Aspect-Level Sentiment Classification
,”
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Association for Computational Linguistics
,
Melbourne, Australia
,
July 15–20
, pp.
579
585
. 10.18653/v1/p18-2092
30.
Gologlu
,
C.
, and
Mizrak
,
C.
,
2011
, “
An Integrated Fuzzy Logic Approach to Customer-Oriented Product Design
,”
J. Eng. Des.
,
22
(
2
), pp.
113
127
. 10.1080/09544820903032519
31.
Culotta
,
A.
, and
Sorensen
,
J.
,
2004
, “
Dependency Tree Kernels for Relation Extraction
,”
Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, ACL ’04, Association for Computational Linguistics
,
Barcelona, Spain
,
July 21–26
, pp.
423
429
. 10.3115/1218955.1219009
32.
Mikolov
,
T.
,
Chen
,
K.
,
Corrado
,
G.
, and
Dean
,
J.
,
2013
, “
Efficient Estimation of Word Representations in Vector Space
,” CoRR, abs/1301.3781. https://arxiv.org/abs/1301.3781.
33.
Jurafsky
,
D.
, and
Martin
,
J. H.
,
2009
,
Speech and Language Processing
, 2nd ed.,
Pearson Education, Inc.
,
Upper Saddle River, NJ
.
34.
Santorini
,
B.
,
1990
, “
Part-Of-Speech Tagging Guidelines for the Penn Treebank Project (3rd revision)
,”
University of Pennsylvania
,
Philadelphia, PA
, Technical Report No. MS-CIS-90-47.
35.
Pepe
,
M. S.
,
2000
, “
Receiver Operating Characteristic Methodology
,”
J. Am. Stat. Assoc.
,
95
(
449
), pp.
308
311
. 10.1080/01621459.2000.10473930
36.
Pelleg
,
D.
, and
Moore
,
A. W.
,
2000
, “
X-Means: Extending K-Means with Efficient Estimation of the Number of Clusters
,”
Proceedings of the Seventeenth International Conference on Machine Learning, ICML ’00
,
Morgan Kaufmann Publishers Inc.
,
Stanford, CA
,
June 29–July 2
, pp.
727
734
.
37.
Suryadi
,
D.
, and
Kim
,
H.
,
2019
, “
Automatic Identification of Product Usage Contexts From Online Customer Reviews
,”
Proceedings of the International Conference on Engineering Design, ICED
,
Delft, The Netherlands
,
Aug. 5–8
, pp.
2507
2516
. 10.1017/dsi.2019.257
38.
Řehůřek
,
R.
, and
Sojka
,
P.
,
2010
, “
Software Framework for Topic Modelling With Large Corpora
,”
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, ELRA
,
Valletta, Malta
,
May 22
, pp.
46
50
.
39.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
. 10.3389/fninf.2014.00014
40.
Mikolov
,
T.
,
Sutskever
,
I.
,
Chen
,
K.
,
Corrado
,
G.
, and
Dean
,
J.
,
2013
, “
Distributed Representations of Words and Phrases and Their Compositionality
,” CoRR, abs/1310.4546. http://arxiv.org/abs/1310.4546
41.
Novikov
,
A.
,
2018
, “
Annoviko/Pyclustering: Pyclustering 0.8.1 Release
,”
May
. https://dx.doi.org/10.5281/zenodo.1254845
42.
Shocker
,
A. D.
,
Ben-Akiva
,
M.
,
Boccara
,
B.
, and
Nedungadi
,
P.
,
1991
, “
Consideration Set Influences on Consumer Decision-Making and Choice: Issues, Models, and Suggestions
,”
Mark. Lett.
,
2
(
3
), pp.
181
197
. 10.1007/BF02404071
You do not currently have access to this content.