Abstract

Recent advances in design optimization have significant potential to improve the function of mechanical components and systems. Coupled with additive manufacturing, topology optimization is one category of numerical methods used to produce algorithmically generated optimized designs making a difference in the mechanical design of hardware currently being introduced to the market. Unfortunately, many of these algorithms require extensive manual setup and control, particularly of tuning parameters that control algorithmic function and convergence. This paper introduces a framework based on machine learning approaches to recommend tuning parameters to a user in order to avoid costly trial and error involved in manual tuning. The algorithm reads tuning parameters from a repository of prior, similar problems adjudged using a dissimilarity metric based on problem metadata and refines them for the current problem using a Bayesian optimization approach. The approach is demonstrated for a simple topology optimization problem with the objective of achieving good topology optimization solution quality and then with the additional objective of finding an optimal “trade” between solution quality and required computational time. The goal is to reduce the total number of “wasted” tuning runs that would be required for purely manual tuning. With more development, the framework may ultimately be useful on an enterprise level for analysis and optimization problems—topology optimization is one example but the framework is also applicable to other optimization problems such as shape and sizing and in high-fidelity physics-based analysis models—and enable these types of advanced approaches to be used more efficiently.

References

References
1.
Zhu
,
J.-H.
,
Zhang
,
W.-H.
, and
Xia
,
L.
,
2016
, “
Topology Optimization in Aircraft and Aerospace Structures Design
,”
Arch. Comput. Methods Eng.
,
23
(
4
), pp.
595
622
. 10.1007/s11831-015-9151-2
2.
Orme
,
M. E.
,
Gschweitl
,
M.
,
Ferrari
,
M.
,
Madera
,
I.
, and
Mouriaux
,
F.
,
2017
, “
Designing for Additive Manufacturing: Lightweighting Through Topology Optimization Enables Lunar Spacecraft
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100905
. 10.1115/1.4037304
3.
Dede
,
E. M.
,
2012
, “
Optimization and Design of a Multipass Branching Microchannel Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041001
. 10.1115/1.4007159
4.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
. 10.1115/1.4030989
5.
Deng
,
X.
,
Wang
,
Y.
,
Yan
,
J.
,
Liu
,
T.
, and
Wang
,
S.
,
2015
, “
Topology Optimization of Total Femur Structure: Application of Parameterized Level Set Method Under Geometric Constraints
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011402
. 10.1115/1.4031803
6.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
. 10.1016/0045-7825(88)90086-2
7.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
8.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
37
(
3
), pp.
217
237
. 10.1007/s00158-007-0217-0
9.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin
.
10.
Patel
,
N. M.
,
Kang
,
B.-S.
,
Renaud
,
J. E.
, and
Tovar
,
A.
,
2009
, “
Crashworthiness Design Using Topology Optimization
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061013
. 10.1115/1.3116256
11.
Geiss
,
M. J.
,
Boddeti
,
N.
,
Weeger
,
O.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2019
, “
Combined Level-Set-XFEM-Density Topology Optimization of Four-Dimensional Printed Structures Undergoing Large Deformation
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051405
. 10.1115/1.4041945
12.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
. 10.1002/fld.426
13.
Gersborg-Hansen
,
A.
,
Sigmund
,
O.
, and
Haber
,
R. B.
,
2005
, “
Topology Optimization of Channel Flow Problems
,”
Struct. Multidiscipl. Optim.
,
30
(
3
), pp.
181
192
. 10.1007/s00158-004-0508-7
14.
Olesen
,
L. H.
,
Okkels
,
F.
, and
Bruus
,
H.
,
2006
, “
A High-Level Programming-Language Implementation of Topology Optimization Applied to Steady-State Navier-Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
65
(
7
), pp.
975
1001
. 10.1002/nme.1468
15.
Makhija
,
D.
, and
Maute
,
K.
,
2015
, “
Level Set Topology Optimization of Scalar Transport Problems
,”
Struct. Multidiscipl. Optim.
,
51
(
2
), pp.
267
285
. 10.1007/s00158-014-1142-7
16.
Alexandersen
,
J.
,
Aage
,
N.
,
Andreasen
,
C. S.
, and
Sigmund
,
O.
,
2014
, “
Topology Optimisation for Natural Convection Problems
,”
Int. J. Numer. Methods Fluids
,
76
(
10
), pp.
699
721
. 10.1002/fld.3954
17.
Dbouk
,
T.
,
2017
, “
A Review About the Engineering Design of Optimal Heat Transfer Systems Using Topology Optimization
,”
Appl. Therm. Eng.
,
112
(
5
), pp.
841
854
. 10.1016/j.applthermaleng.2016.10.134
18.
Haber
,
R. B.
,
Jog
,
C. S.
, and
Bendsøe
,
M. P.
,
1996
, “
A New Approach to Variable-Topology Shape Design Using a Constraint on Perimeter
,”
Struct. Optim.
,
11
(
1–2
), pp.
1
12
. 10.1007/BF01279647
19.
Fernandes
,
P.
,
Guedes
,
J. M.
, and
Rodrigues
,
H.
,
1999
, “
Topology Optimization of Three-Dimensional Linear Elastic Structures With a Constraint on “Perimeter”
,”
Comput. Struct.
,
73
(
6
), pp.
583
594
. 10.1016/S0045-7949(98)00312-5
20.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
,
16
(
1
), pp.
68
75
. 10.1007/BF01214002
21.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Kuelen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
437
472
. 10.1007/s00158-013-0912-y
22.
Villanueva
,
C. H.
, and
Maute
,
K.
,
2014
, “
Density and Level Set-XFEM Schemes for Topology Optimization of 3-D Structures
,”
Comput. Mech.
,
54
(
1
), pp.
133
150
. 10.1007/s00466-014-1027-z
23.
Feurer
,
M.
,
Springenberg
,
J. T.
, and
Hutter
,
F.
,
2015
, “
Initializing Bayesian Hyperparameter Optimization Via Meta-Learning
,”
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
,
Austin, TX, Jan. 25–30
, pp.
1128
1135
.
24.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
,
The MIT Press
,
Cambridge, MA
.
25.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
26.
Hupkens
,
I.
,
Emmerich
,
M.
, and
Deutz
,
A.
,
2014
, “
Faster Computation of Expected Hypervolume Improvement
,” preprint arXiv:1408.7114.
You do not currently have access to this content.