Abstract

Solving any design problem involves planning and strategizing, where intermediate processes are identified and then sequenced. This is an abstract skill that designers learn over time and then use across similar problems. However, this transfer of strategies in design has not been effectively modeled or leveraged within computational agents. This note presents an approach to represent design strategies using a probabilistic model. The model provides a mechanism to generate new designs based on certain design strategies while solving configuration design task in a sequential manner. This work also demonstrates that this probabilistic representation can be used to transfer strategies from human designers to computational design agents in a way that is general and useful. This transfer-driven approach opens up the possibility of identifying high-performing behavior in human designers and using it to guide computational design agents. Finally, a quintessential behavior of transfer learning is illustrated by agents as transferring design strategies across different problems led to an improvement in agent performance. The work presented in this study leverages the Cognitively Inspired Simulated Annealing Teams (CISAT) framework, an agent-based model that has been shown to mimic human problem-solving in configuration design problems.

References

References
1.
Perkins
,
D. N.
,
Salomon
,
G.
, and
Press
,
P.
,
1992
, “Transfer of Learning,”
International Encyclopedia of Education
,
2nd ed.
,
Pergamon Press
,
New York
.
2.
Hoffman
,
R. R.
,
1998
, “How Can Expertise Be Defined? Implications of Research From Cognitive Psychology,”
Exploring Expertise: Issues and Perspectives
,
R.
Williams
,
W.
Faulkner
, and
J.
Fleck
, eds.,
Palgrave Macmillan UK
,
London
, pp.
81
100
.
3.
Qureshi
,
M. O.
, and
Syed
,
R. S.
,
2014
, “
The Impact of Robotics on Employment and Motivation of Employees in the Service Sector, With Special Reference to Health Care
,”
Saf. Health Work
,
5
(
4
), pp.
198
202
. 10.1016/j.shaw.2014.07.003
4.
Mittal
,
S.
, and
Frayman
,
F.
,
1989
, “
Towards a Generic Model of Configuraton Tasks
,”
Proceedings of the 11th International Joint Conference on Artificial Intelligence—Volume 2
,
Morgan Kaufmann Publishers Inc.
,
San Francisco, CA
, pp.
1395
1401
.
5.
Puppe
,
F.
,
1993
,
Systematic Introduction to Expert Systems: Knowledge Representations and Problem Solving Methods
,
Springer-Verlag New York, Inc.
,
Secaucus, NJ
.
6.
Maher
,
M. L.
,
1990
, “
Process Models for Design Synthesis
,”
AI Mag.
,
11
(
4
), p.
49
.
7.
Breuker
,
V. D. V.
,
1994
,
Common KADS Library for Expertise Modelling
,
IOS Press
,
Amsterdam, The Netherlands
.
8.
Wielinga
,
B.
, and
Schreiber
,
G.
,
1997
, “
Configuration-Design Problem Solving
,”
IEEE Expert-Intelligent Syst. Appl.
,
12
(
2
), pp.
49
56
. 10.1109/64.585104
9.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2015
, “
Lifting the Veil: Drawing Insights About Design Teams From a Cognitively-Inspired Computational Model
,”
Des. Stud.
,
40
, pp.
119
142
. 10.1016/j.destud.2015.06.005
10.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2017
, “
Mining Process Heuristics From Designer Action Data via Hidden Markov Models
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111412
. 10.1115/1.4037308
11.
Chandrasekaran
,
B.
,
1990
, “
Design Problem Solving: A Task Analysis
,”
AI Mag.
,
11
(
4
), pp.
59
71
.
12.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2017
, “
Capturing Human Sequence-Learning Abilities in Configuration Design Tasks Through Markov Chains
,”
ASME J. Mech. Des.
,
139
(
9
), p.
091101
. 10.1115/1.4037185
13.
Ji
,
H.
,
Yang
,
M. C.
, and
Honda
,
T.
,
2007
, “
A Probabilistic Approach for Extracting Design Preferences From Design Team Discussion
,”
ASME. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 3: 19th International Conference on Design Theory and Methodology; 1st International Conference on Micro- and Nanosystems; and 9th International Conference on Advanced Vehicle Tire Technologies, Parts A and B
,
Las Vegas, NV
,
Sept. 4–7
, pp.
297
306
.
14.
Jin
,
Y.
,
Levit
,
R.
, and
Levitt
,
R.
,
1996
, “
The Virtual Design Team: A Computational Model of Project Organizations
,”
Comput. Math. Organization Theory
,
2
(
3
), pp.
171
196
. 10.1007/BF00127273
15.
Olson
,
J.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2009
, “
Unlocking Organizational Potential: A Computational Platform for Investigating Structural Interdependence in Design
,”
ASME J. Mech. Des.
,
131
(
3
), p.
031001
. 10.1115/1.3066501
16.
Dionne
,
S. D.
,
Sayama
,
H.
,
Hao
,
C.
,
James
,
B.
, and
Bush
,
B. J.
,
2010
,
The Role of Leadership in Shared Mental Model Convergence and Team Performance Improvement: An Agent-Based Computational Model
,
Elsevier Inc
.,
New York.
17.
Sayama
,
H.
,
Farrell
,
D. L.
, and
Dionne
,
S. D.
,
2011
, “
The Effects of Mental Model Formation on Group Decision Making: An Agent-Based Simulation
,”
Complexity
,
16
(
3
), pp.
49
57
. 10.1002/cplx.20329
18.
Singh
,
V.
,
Dong
,
A.
, and
Gero
,
J. S.
,
2012
, “
Computational Studies to Understand the Role of Social Learning in Team Familiarity and Its Effects on Team Performance
,”
CoDesign
,
8
(
1
), pp.
25
41
. 10.1080/15710882.2011.633088
19.
Singh
,
V.
,
Dong
,
A.
, and
Gero
,
J. S.
,
2013
, “
Social Learning in Design Teams: The Importance of Direct and Indirect Communications
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
27
(
2
), pp.
167
182
. 10.1017/S0890060413000061
20.
Perišić
,
M. M.
,
Martinec
,
T.
,
Štorga
,
M.
, and
Kanduč
,
T.
,
2016
, “
Agent-Based Simulation Framework to Support Management of Teams Performing Development Activities
,”
14th International Design Conference (DESIGN 2016)
,
Dubrovnik, Hrvatska
,
May 16–19
, pp.
1925
1936
.
21.
Perišic
,
M. M.
,
Štorga
,
M.
, and
Gero
,
J.
,
2017
, “
Building a Computational Laboratory for the Study of Team Behaviour in Product Development
,”
Proceedings of the International Conference on Engineering Design, ICED
,
Vancouver, Canada
,
Aug. 21–25
.
22.
Campbell
,
M. I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
1999
, “
Engineering Design A-Design: An Agent-Based Approach to Conceptual Design in a Dynamic Environment
,”
Res. Eng. Des.
,
11
(
3
), pp.
172
192
. 10.1007/s001630050013
23.
Orsborn
,
S.
, and
Cagan
,
J.
,
2009
, “
Multiagent Shape Grammar Implementation: Automatically Generating Form Concepts According to a Preference Function
,”
ASME J. Mech. Des.
,
131
(
12
), p.
121007
. 10.1115/1.4000449
24.
Miller
,
S. W.
,
Simpson
,
T. W.
, and
Yukish
,
M. A.
,
2015
, Design as a Sequential Decision Process: A Method for Reducing Design Set Space Using Models to Bound Objectives.
25.
Clegg
,
B. A.
,
DiGirolamo
,
G. J.
, and
Keele
,
S. W.
,
1998
, “
Sequence Learning
,”
Trends Cognit. Sci.
,
2
(
8
), pp.
275
281
. 10.1016/S1364-6613(98)01202-9
26.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2017
, “Utilizing Markov Chains to Understand Operation Sequencing in Design Tasks,”
Des. Comput. Cognit.
, Vol.
16
,
J.
Gero
, ed.,
Springer
,
Cham
, pp.
401
418
. 10.1007/978-3-319-44989-0_22
27.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2017
, “
Data on the Configuration Design of Internet-Connected Home Cooling Systems by Engineering Students
,”
Data Brief
,
14
, pp.
773
776
. 10.1016/j.dib.2017.08.050
28.
Guindon
,
R.
,
1990
, “
Designing the Design Process: Exploiting Opportunistic Thoughts
,”
Hum.-Comput. Interact.
,
5
(
2–3
), pp.
305
344
. 10.1080/07370024.1990.9667157
29.
Baum
,
L. E.
,
Petrie
,
T.
,
Soules
,
G.
, and
Weiss
,
N.
,
1970
, “
A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains
,”
Ann. Math. Statist
,
41
(
1
), pp.
164
171
. 10.1214/aoms/1177697196
30.
Simon
,
H. A.
, and
Kotovsky
,
K.
,
1963
, “
Human Acquisition of Concepts for Sequential Patterns
,”
Psychol. Rev.
,
70
(
6
), pp.
534
546
. 10.1037/h0043901
31.
Kuleshov
,
V.
, and
Precup
,
D.
,
2014
, “
Algorithms for Multi-Armed Bandit Problems
,” arXiv preprint. https://arxiv.org/abs/1402.6028
32.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
1998
,
Reinforcement Learning: An Introduction
,
MIT Press
,
Cambridge, MA
.
33.
Baldi
,
P.
, and
Chauvin
,
Y.
,
1994
, “
Smooth On-Line Learning Algorithms for Hidden Markov Models
,”
Neural Comput.
,
6
(
2
), pp.
307
318
. 10.1162/neco.1994.6.2.307
34.
Chis
,
T.
, and
Harrison
,
P. G.
,
2015
, “
Adapting Hidden Markov Models for Online Learning
,”
Electron. Notes Theor. Comput. Sci.
,
318
, pp.
109
127
. 10.1016/j.entcs.2015.10.022
35.
Taylor
,
M. E.
, and
Stone
,
P.
,
2009
, “
Transfer Learning for Reinforcement Learning Domains: A Survey
,”
J. Mach. Learn. Res.
,
10
, pp.
1633
1685
.
36.
Torrey
,
L.
, and
Shavlik
,
J.
,
2009
, “Transfer Learning,”
Handbook of Research on Machine Learning Applications
,
E
Soria
,
J
Martin
,
R
Magdalena
,
M
Martinez
, and
A
Serrano
, eds.,
IGI Global
,
Hershey, PA
, pp.
1
22
.
37.
Raina
,
A.
,
McComb
,
C.
, and
Cagan
,
J.
,
2018
, “
Design Strategy Transfer in Cognitively-Inspired Agents
,”
ASME. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 2A: 44th Design Automation Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
You do not currently have access to this content.