Abstract

Machine learning can be used to automate common or time-consuming engineering tasks for which sufficient data already exist. For instance, design repositories can be used to train deep learning algorithms to assess component manufacturability; however, methods to determine the suitability of a design repository for use with machine learning do not exist. We provide an initial investigation toward identifying such a method using “artificial” design repositories to experimentally test the extent to which altering properties of the dataset impacts the assessment precision and generalizability of neural networks trained on the data. For this experiment, we use a 3D convolutional neural network to estimate quantitative manufacturing metrics directly from voxel-based component geometries. Additive manufacturing (AM) is used as a case study because of the recent growth of AM-focused design repositories such as GrabCAD and Thingiverse that are readily accessible online. In this study, we focus only on material extrusion, the dominant consumer AM process, and investigate three AM build metrics: (1) part mass, (2) support material mass, and (3) build time. Additionally, we compare the convolutional neural network accuracy to that of a baseline multiple linear regression model. Our results suggest that training on design repositories with less standardized orientation and position resulted in more accurate trained neural networks and that orientation-dependent metrics were harder to estimate than orientation-independent metrics. Furthermore, the convolutional neural network was more accurate than the baseline linear regression model for all build metrics.

References

References
1.
Schmidhuber
,
J.
,
2015
, “
Deep Learning in Neural Networks: An Overview
,”
Neural Networks
,
61
, pp.
85
117
. 10.1016/j.neunet.2014.09.003
2.
Regli
,
W. C.
, and
Cicirello
,
V. A.
,
2000
, “
Managing Digital Libraries for Computer-Aided Design
,”
Comput. Aided Des.
,
32
(
2
), pp.
119
132
.
3.
Lyu
,
G.
,
Chu
,
X.
, and
Xue
,
D.
,
2017
, “
Product Modeling From Knowledge, Distributed Computing and Lifecycle Perspectives: A Literature Review
,”
Comput. Ind.
,
84
, pp.
1
13
. 10.1016/j.compind.2016.11.001
4.
Dering
,
M. L.
, and
Tucker
,
C. S.
,
2017
, “
A Convolutional Neural Network Model for Predicting a Product’s Function, Given Its Form
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111408
. 10.1115/1.4037309
5.
McComb
,
C.
,
Murphey
,
C.
,
Meisel
,
N.
, and
Simpson
,
T. W.
,
2018
, “
Predicting Part Mass, Required Support Material, and Build Time Via Autoencoded Voxel Patterns
,”
29th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
, pp.
1
15
.
6.
Munguía
,
J.
,
Ciurana
,
J.
, and
Riba
,
C.
,
2009
, “
Neural-Network-Based Model for Build-Time Estimation in Selective Laser Sintering
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
223
(
8
), pp.
995
1003
. 10.1243/09544054JEM1324
7.
Tsai
,
H.-C.
,
Hsiao
,
S.-W.
, and
Hung
,
F.-K.
,
2006
, “
An Image Evaluation Approach for Parameter-Based Product Form and Color Design
,”
Comput. Aided Des.
,
38
(
2
), pp.
157
171
.
8.
Chan
,
S. L.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Data-Driven Cost Estimation for Additive Manufacturing in Cybermanufacturing
,”
J. Manuf. Syst.
,
46
, pp.
115
126
. 10.1016/j.jmsy.2017.12.001
9.
Samie Tootooni
,
M.
,
Dsouza
,
A.
,
Donovan
,
R.
,
Rao
,
P. K.
,
James Kong
,
Z.
, and
Borgesen
,
P.
,
2017
, “
Classifying the Dimensional Variation in Additive Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches
,”
J. Manuf. Sci. Eng.
,
139
(
9
), p.
091005
. 10.1115/1.4036641
10.
Maturana
,
D.
, and
Scherer
,
S.
,
2015
, “
VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
922
928
.
11.
Jain
,
A. K.
,
Mao
,
J.
, and
Mohiuddin
,
K. M.
,
1996
, “
Artificial Neural Networks: A Tutorial
,”
Computer
,
29
(
3
), pp.
31
44
.
12.
Pal
,
N. R.
, and
Pal
,
S. K.
,
1993
, “
A Review on Image Segmentation Techniques
,”
Pattern Recognit.
,
26
(
9
), pp.
1277
1294
. 10.1016/0031-3203(93)90135-J
13.
Egmont-Petersen
,
M.
,
de Ridder
,
D.
, and
Handels
,
H.
,
2002
, “
Image Processing With Neural Networks—A Review
,”
Pattern Recognit.
,
35
(
10
), pp.
2279
2301
. 10.1016/S0031-3203(01)00178-9
14.
McComb
,
C.
,
2019
, “Toward the Rapid Design of Engineered Systems Through Deep Neural Networks,”
Design Computing and Cognition’18
,
J. S.
Gero
, ed.,
Springer International Publishing
,
Cham
, pp.
3
20
.
15.
Kleesiek
,
J.
,
Urban
,
G.
,
Hubert
,
A.
,
Schwarz
,
D.
,
Maier-Hein
,
K.
,
Bendszus
,
M.
, and
Biller
,
A.
,
2016
, “
Deep MRI Brain Extraction: A 3D Convolutional Neural Network for Skull Stripping
,”
Neuroimage
,
129
, pp.
460
469
. 10.1016/j.neuroimage.2016.01.024
16.
Wang
,
T.-M.
,
Xi
,
J.-T.
, and
Jin
,
Y.
,
2007
, “
A Model Research for Prototype Warp Deformation in the FDM Process
,”
Int. J. Adv. Manuf. Technol.
,
33
(
11–12
), pp.
1087
1096
. 10.1007/s00170-006-0556-9
17.
Khosravi
,
A.
,
Nahavandi
,
S.
,
Creighton
,
D.
, and
Atiya
,
A. F.
,
2011
, “
Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances
,”
IEEE Trans. Neural Networks
,
22
(
9
), pp.
1341
1356
. 10.1109/TNN.2011.2162110
18.
Austin
,
P. C.
, and
Steyerberg
,
E. W.
,
2015
, “
The Number of Subjects Per Variable Required in Linear Regression Analyses
,”
J. Clin. Epidemiol
,
68
(
6
), pp.
627
636
. 10.1016/j.jclinepi.2014.12.014
19.
Regli
,
W. C.
, and
Gaines
,
D. M.
,
1997
, “
A Repository for Design, Process Planning and Assembly
,”
Comput. Aided Des.
,
29
(
12
), pp.
895
905
.
20.
Szykman
,
S.
,
2002
, “
Architecture and Implementation of a Design Repository System
,”
Volume 1: 22nd Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Sept. 29–Oct. 2
, ASME, pp.
429
443
.
21.
Bohm
,
M. R.
,
Stone
,
R. B.
, and
Szykman
,
S.
,
2005
, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
J. Comput. Inf. Sci. Eng.
,
5
(
4
), p.
360
. 10.1115/1.1884618
22.
Bohm
,
M. R.
,
Stone
,
R. B.
,
Simpson
,
T. W.
, and
Steva
,
E. D.
,
2006
, “
Introduction of a Data Schema: The Inner Workings of a Design Repository
,”
Volume 3: 26th Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
, ASME, pp.
631
642
.
23.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
,
2008
, “
Using a Design Repository to Drive Concept Generation
,”
J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
014502
. 10.1115/1.2830844
24.
Devendorf
,
M.
,
Lewis
,
K.
,
Simpson
,
T. W.
,
Stone
,
R. B.
, and
Regli
,
W. C.
,
2009
, “
Evaluating the Use of Digital Product Repositories to Enhance Product Dissection Activities in the Classroom
,”
J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
041008
. 10.1115/1.3264574
25.
Wu
,
Z.
,
Song
,
S.
,
Khosla
,
A.
,
Yu
,
F.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
,
2015
, “
3D ShapeNets: A Deep Representation for Volumetric Shapes
,”
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Boston, MA
,
June 7–12
, pp.
1912
1920
.
26.
Chang
,
A. X.
,
Funkhouser
,
T.
,
Guibas
,
L.
,
Hanrahan
,
P.
,
Huang
,
Q.
,
Li
,
Z.
,
Savarese
,
S.
,
Savva
,
M.
,
Song
,
S.
,
Su
,
H.
,
Xiao
,
J.
,
Yi
,
L.
, and
Yu
,
F.
,
2015
, “
ShapeNet: An Information-Rich 3D Model Repository
.”
27.
Aoyagi
,
K.
,
Wang
,
H.
,
Sudo
,
H.
, and
Chiba
,
A.
,
2019
, “
Simple Method to Construct Process Maps for Additive Manufacturing Using a Support Vector Machine
,”
Addit. Manuf.
,
27
, pp.
353
362
. 10.1016/j.addma.2019.03.013
28.
Menon
,
A.
,
Póczos
,
B.
,
Feinberg
,
A. W.
, and
Washburn
,
N. R.
,
2019
, “
Optimization of Silicone 3D Printing With Hierarchical Machine Learning
,”
3D Print. Addit. Manuf.
(submitted). 10.1089/3dp.2018.0088
29.
Sharifi
,
S.
, and
Banadaki
,
Y. M.
,
2019
,
Smart Structures and NDE for Energy Systems and Industry 4.0
,
C.
Niezrecki
,
N. G.
Meyendorf
,
K.
Gath
, eds.,
SPIE
,
Anaheim, CA
, p.
33
.
30.
Harrison
,
R.
,
Holm
,
E. A.
, and
De Graef
,
M.
,
2019
, “
On the Use of 2D Moment Invariants in the Classification of Additive Manufacturing Powder Feedstock
,”
Mater. Charact.
,
149
, pp.
255
263
. 10.1016/j.matchar.2019.01.019
31.
He
,
H.
,
Yang
,
Y.
, and
Pan
,
Y.
,
2019
, “
Machine Learning for Continuous Liquid Interface Production: Printing Speed Modelling
,”
J. Manuf. Syst.
,
50
, pp.
236
246
. 10.1016/j.jmsy.2019.01.004
32.
Stavroulakis
,
P.
,
Chen
,
S.
,
Delorme
,
C.
,
Bointon
,
P.
,
Tzimiropoulos
,
G.
, and
Leach
,
R.
,
2019
, “
Rapid Tracking of Extrinsic Projector Parameters in Fringe Projection Using Machine Learning
,”
Opt. Lasers Eng.
,
114
, pp.
7
14
. 10.1016/j.optlaseng.2018.08.018
33.
Baturynska
,
I.
,
Semeniuta
,
O.
, and
Martinsen
,
K.
,
2018
, “
Optimization of Process Parameters for Powder Bed Fusion Additive Manufacturing by Combination of Machine Learning and Finite Element Method: A Conceptual Framework
,”
Procedia CIRP
,
67
, pp.
227
232
. 10.1016/j.procir.2017.12.204
34.
Scime
,
L.
, and
Beuth
,
J.
,
2019
, “
Using Machine Learning to Identify In-Situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
25
, pp.
151
165
. 10.1016/j.addma.2018.11.010
35.
Caggiano
,
A.
,
Zhang
,
J.
,
Alfieri
,
V.
,
Caiazzo
,
F.
,
Gao
,
R.
, and
Teti
,
R.
,
2019
, “
Machine Learning-Based Image Processing for On-Line Defect Recognition in Additive Manufacturing
,”
CIRP Ann.
,
68
, pp.
3
6
.
36.
Lin
,
W.
,
Shen
,
H.
,
Fu
,
J.
, and
Wu
,
S.
,
2019
, “
Online Quality Monitoring in Material Extrusion Additive Manufacturing Processes Based on Laser Scanning Technology
,”
Precis. Eng.
10.1016/j.precisioneng.2019.06.004
37.
Zhang
,
B.
,
Liu
,
S.
, and
Shin
,
Y. C.
,
2019
, “
In-Process Monitoring of Porosity During Laser Additive Manufacturing Process
,”
Addit. Manuf.
,
28
, pp.
497
505
. 10.1016/j.addma.2019.05.030
38.
Liu
,
C.
,
Law
,
A. C. C.
,
Roberson
,
D.
, and
James Kong
,
Z.
,
2019
, “
Image Analysis-Based Closed Loop Quality Control for Additive Manufacturing With Fused Filament Fabrication
,”
J. Manuf. Syst.
,
51
, pp.
75
86
. 10.1016/j.jmsy.2019.04.002
39.
Sturm
,
L. D.
,
Albakri
,
M. I.
,
Tarazaga
,
P. A.
, and
Williams
,
C. B.
,
2019
, “
In Situ Monitoring of Material Jetting Additive Manufacturing Process Via Impedance Based Measurements
,”
Addit. Manuf.
,
28
, pp.
456
463
. 10.1016/j.addma.2019.05.022
40.
Wu
,
H.
,
Yu
,
Z.
, and
Wang
,
Y.
,
2019
, “
Experimental Study of the Process Failure Diagnosis in Additive Manufacturing Based on Acoustic Emission
,”
Measurement
,
136
, pp.
445
453
. 10.1016/j.measurement.2018.12.067
41.
Tapia
,
G.
,
Elwany
,
A. H.
, and
Sang
,
H.
,
2016
, “
Prediction of Porosity in Metal-Based Additive Manufacturing Using Spatial Gaussian Process Models
,”
Addit. Manuf.
,
12
, pp.
282
290
. 10.1016/j.addma.2016.05.009
42.
Wu
,
M.
,
Song
,
Z.
, and
Moon
,
Y. B.
,
2019
, “
Detecting Cyber-Physical Attacks in Cybermanufacturing Systems With Machine Learning Methods
,”
J. Intell. Manuf.
,
30
(
3
), pp.
1111
1123
. 10.1007/s10845-017-1315-5
43.
Al Faruque
,
M. A.
,
Chhetri
,
S. R.
,
Canedo
,
A.
, and
Wan
,
J.
,
2016
, “
Acoustic Side-Channel Attacks on Additive Manufacturing Systems
,”
2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)
,
Vienna, Austria
,
Apr. 11–14
, pp.
1
10
.
44.
Al Faruque
,
M. A.
,
Chhetri
,
S. R.
,
Canedo
,
A.
, and
Wan
,
J.
,
2016
, “
Forensics of Thermal Side-Channel in Additive Manufacturing Systems
,” CECS Tech. Report# 16-01.
45.
Francis
,
J.
, and
Bian
,
L.
,
2019
, “
Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing Using Big Data
,”
Manuf. Lett.
,
20
, pp.
10
14
. 10.1016/j.mfglet.2019.02.001
46.
Khanzadeh
,
M.
,
Rao
,
P.
,
Jafari-Marandi
,
R.
,
Smith
,
B. K.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2017
, “
Quantifying Geometric Accuracy With Unsupervised Machine Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts
,”
J. Manuf. Sci. Eng.
,
140
(
3
), p.
031011
. 10.1115/1.4038598
47.
Zhu
,
Z.
,
Anwer
,
N.
,
Huang
,
Q.
, and
Mathieu
,
L.
,
2018
, “
Machine Learning in Tolerancing for Additive Manufacturing
,”
CIRP Ann.
,
67
(
1
), pp.
157
160
. 10.1016/j.cirp.2018.04.119
48.
Hamel
,
C. M.
,
Roach
,
D. J.
,
Long
,
K. N.
,
Demoly
,
F.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2019
, “
Machine-Learning Based Design of Active Composite Structures for 4D Printing
,”
Smart Mater. Struct.
,
28
(
6
), p.
065005
. 10.1088/1361-665X/ab1439
49.
Li
,
Z.
,
Zhang
,
Z.
,
Shi
,
J.
, and
Wu
,
D.
,
2019
, “
Prediction of Surface Roughness in Extrusion-Based Additive Manufacturing With Machine Learning
,”
Robot. Comput. Integr. Manuf.
,
57
, pp.
488
495
. 10.1016/j.rcim.2019.01.004
50.
Gu
,
G. X.
,
Chen
,
C.-T.
,
Richmond
,
D. J.
, and
Buehler
,
M. J.
,
2018
, “
Bioinspired Hierarchical Composite Design Using Machine Learning: Simulation, Additive Manufacturing, and Experiment
,”
Mater. Horizons
,
5
(
5
), pp.
939
945
. 10.1039/C8MH00653A
51.
Gu
,
G. X.
,
Chen
,
C.-T.
, and
Buehler
,
M. J.
,
2018
, “
De Novo Composite Design Based on Machine Learning Algorithm
,”
Extreme Mech. Lett.
,
18
, pp.
19
28
. 10.1016/j.eml.2017.10.001
52.
Mies
,
D.
,
Marsden
,
W.
, and
Warde
,
S.
,
2016
, “
Overview of Additive Manufacturing Informatics: ‘A Digital Thread’
,”
Integr. Mater. Manuf. Innov.
,
5
(
1
), pp.
114
142
. 10.1186/s40192-016-0050-7
53.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Des.
,
69
, pp.
65
89
.
54.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
. 10.1016/j.cirp.2016.05.004
55.
Jee
,
H.
, and
Witherell
,
P.
,
2017
, “
A Method for Modularity in Design Rules for Additive Manufacturing
,”
Rapid Prototyp. J.
,
23
(
6
), pp.
1107
1118
. 10.1108/RPJ-02-2016-0016
56.
Francois
,
M. M.
,
Sun
,
A.
,
King
,
W. E.
,
Henson
,
N. J.
,
Tourret
,
D.
,
Bronkhorst
,
C. A.
,
Carlson
,
N. N.
,
Newman
,
C. K.
,
Haut
,
T.
,
Bakosi
,
J.
,
Gibbs
,
J. W.
,
Livescu
,
V.
,
Vander Wiel
,
S. A.
,
Clarke
,
A. J.
,
Schraad
,
M. W.
,
Blacker
,
T.
,
Lim
,
H.
,
Rodgers
,
T.
,
Owen
,
S.
,
Abdeljawad
,
F.
,
Madison
,
J.
,
Anderson
,
A. T.
,
Fattebert
,
J.-L.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Khairallah
,
S. A.
, and
Walton
,
O.
,
2017
, “
Modeling of Additive Manufacturing Processes for Metals: Challenges and Opportunities
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
4
), pp.
198
206
. 10.1016/j.cossms.2016.12.001
57.
Boschetto
,
A.
, and
Bottini
,
L.
,
2014
, “
Accuracy Prediction in Fused Deposition Modeling
,”
Int. J. Adv. Manuf. Technol.
,
73
(
5–8
), pp.
913
928
. 10.1007/s00170-014-5886-4
58.
Khadilkar
,
A.
,
Wang
,
J.
, and
Rai
,
R.
,
2019
, “
Deep Learning-Based Stress Prediction for Bottom-Up SLA 3D Printing Process
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
2555
2569
. 10.1007/s00170-019-03363-4
59.
Xie
,
W.
,
Noble
,
J. A.
, and
Zisserman
,
A.
,
2018
, “
Microscopy Cell Counting and Detection With Fully Convolutional Regression Networks
,”
Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
,
6
(
3
), pp.
283
292
. 10.1080/21681163.2016.1149104
60.
Townsend
,
A.
,
Senin
,
N.
,
Blunt
,
L.
,
Leach
,
R. K.
, and
Taylor
,
J. S.
,
2016
, “
Surface Texture Metrology for Metal Additive Manufacturing: A Review
,”
Precis. Eng.
,
46
, pp.
34
47
. 10.1016/j.precisioneng.2016.06.001
61.
Alexander
,
P.
,
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Part Orientation and Build Cost Determination in Layered Manufacturing
,”
Comput. Des.
,
30
(
5
), pp.
343
356
.
62.
ASTM International/U.S. Department of Defense
,
2014
, “
ASTM A6/A6M Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling
,”
ASME Boiler & Pressure Vessel Code
,
96
(
C
), pp.
1
63
.
63.
ASTM
,
2001
, “
Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
,” p.
21
.
64.
ASTM
,
2014
, “
Standard Test Method for Tensile Properties of Plastics
,”
ASTM D
,
638
, pp.
1
17
.
65.
Pilz
,
M.
, and
Kamel
,
H. A.
,
1989
, “
Creation and Boundary Evaluation of CSG-Models
,”
Eng. Comput.
,
5
(
2
), pp.
105
118
. 10.1007/BF01199073
66.
Zhang
,
Y.
,
Bernard
,
A.
,
Harik
,
R.
, and
Karunakaran
,
K. P.
,
2017
, “
Build Orientation Optimization for Multi-Part Production in Additive Manufacturing
,”
J. Intell. Manuf.
,
28
(
6
), pp.
1393
1407
. 10.1007/s10845-015-1057-1
67.
Zhang
,
Y.
, and
Bernard
,
A.
,
2013
,
High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping
,
CRC Press
,
Boca Raton, FL
, pp.
411
416
.
68.
Haynes
,
W.
,
2013
, “Tukey’s Test,”
Encyclopedia of Systems Biology
,
W.
Dubitzky
,
O.
Wolkenhauer
,
K.-H.
Cho
, and
H.
Yokota
, eds.,
Springer
,
New York, NY
, pp.
2303
2304
.
69.
Marsan
,
A. L.
,
Kumar
,
V.
,
Dutta
,
D.
, and
Pratt
,
M. J.
,
1998
,
An Assessment of Data Requirements and Data Transfer Formats for Layered Manufacturing
,
Commerce Department, National Institute of Standards and Technology (NIST)
,
Gaithersburg, MD
.
70.
Kechagias
,
J.
, and
Chryssolouris
,
G.
,
1997
, “
Estimation of Build Times in Rapid Prototyping Processes
,”
Proceedings of the 6th European Conference on Rapid Prototyping and Manufacturing
,
University of Nottingham, UK
,
July 1–3
.
71.
Wendel
,
B.
,
Rietzel
,
D.
,
Kühnlein
,
F.
,
Feulner
,
R.
,
Hülder
,
G.
, and
Schmachtenberg
,
E.
,
2008
, “
Additive Processing of Polymers
,”
Macromol. Mater. Eng.
,
293
(
10
), pp.
799
809
. 10.1002/mame.200800121
72.
Di Angelo
,
L.
, and
Di Stefano
,
P.
,
2011
, “
A Neural Network-Based Build Time Estimator for Layer Manufactured Objects
,”
Int. J. Adv. Manuf. Technol.
,
57
(
1–4
), pp.
215
224
. 10.1007/s00170-011-3284-8
73.
Giannatsis
,
J.
,
Dedoussis
,
V.
, and
Laios
,
L.
,
2001
, “
A Study of the Build-Time Estimation Problem for Stereolithography Systems
,”
Robot. Comput. Integr. Manuf.
,
17
(
4
), pp.
295
304
. 10.1016/S0736-5845(01)00007-2
74.
McClurkin
,
J. E.
, and
Rosen
,
D. W.
,
1998
, “
Computer-Aided Build Style Decision Support for Stereolithography
,”
Rapid Prototyp. J.
,
4
(
1
), pp.
4
13
. 10.1108/13552549810197505
75.
Chollet
,
F.
, et al. 
,
2015
, Keras https://keras.io.
76.
Abadi
,
M.
,
Paul
,
B.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Irving
,
G.
,
Isard
,
M.
,
Kudlur
,
M.
,
Levenberg
,
J.
,
Monga
,
R.
,
Moore
,
S.
,
Murray
,
D. G.
,
Steiner
,
B.
,
Tucker
,
P.
,
Vasudevan
,
V.
,
Warden
,
P.
,
Wicke
,
M.
,
Yu
,
Y.
, and
Zheng
,
X.
,
2016
, “
TensorFlow: A System for Large-Scale Machine Learning
,”
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16)
,
Savannah, GA
,
Nov. 2–4
, pp.
265
283
.
77.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference for Learning Representations
,
San Diego, CA
,
May 7–9
.
78.
Andrews
,
D. F.
,
1974
, “
A Robust Method for Multiple Linear Regression
,”
Technometrics
,
16
(
4
), p.
523
. 10.1080/00401706.1974.10489233
79.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
You do not currently have access to this content.