Abstract

Deep learning has recently been applied to various research areas of design optimization. This study presents the need and effectiveness of adopting deep learning for generative design (or design exploration) research area. This work proposes an artificial intelligent (AI)-based deep generative design framework that is capable of generating numerous design options which are not only aesthetic but also optimized for engineering performance. The proposed framework integrates topology optimization and generative models (e.g., generative adversarial networks (GANs)) in an iterative manner to explore new design options, thus generating a large number of designs starting from limited previous design data. In addition, anomaly detection can evaluate the novelty of generated designs, thus helping designers choose among design options. The 2D wheel design problem is applied as a case study for validation of the proposed framework. The framework manifests better aesthetics, diversity, and robustness of generated designs than previous generative design methods.

References

1.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), p.
436
. 10.1038/nature14539
2.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
The MIT Press
,
Cambridge, MA
.
3.
Sosnovik
,
I.
, and
Oseledets
,
I.
,
2017
, “
Neural Networks for Topology Optimization
,” preprint arXiv:1709.09578.
4.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without Any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
. 10.1007/s00158-018-2101-5
5.
Banga
,
S.
,
Gehani
,
H.
,
Bhilare
,
S.
,
Patel
,
S.
, and
Kara
,
L.
,
2018
, “
3D Topology Optimization Using Convolutional Neural Networks
,” preprint arXiv:1808.07440.
6.
Guo
,
T.
,
Lohan
,
D. J.
,
Cang
,
R.
,
Ren
,
M. Y.
, and
Allison
,
J. T.
,
2018
, “
An Indirect Design Representation for Topology Optimization Using Variational Autoencoder and Style Transfer
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 8–12
, p.
0804
.
7.
Cang
,
R.
,
Yao
,
H.
, and
Ren
,
Y.
,
2019
, “
One-Shot Generation of Near-Optimal Topology Through Theory-Driven Machine Learning
,”
Comput. Aided Des.
,
109
, pp.
12
21
. 10.1016/j.cad.2018.12.008
8.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Paper No. V02AT03A013.
9.
Umetani
,
N.
,
2017
, “
Exploring Generative 3D Shapes Using Autoencoder Networks
,”
SIGGRAPH Asia 2017 Technical Briefs
,
Bangkok, Thailand
,
Nov. 27–30
, ACM, p.
24
.
10.
Guo
,
X.
,
Li
,
W.
, and
Iorio
,
F.
,
2016
, “
Convolutional Neural Networks for Steady Flow Approximation
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
, ACM, pp.
481
490
.
11.
Tompson
,
J.
,
Schlachter
,
K.
,
Sprechmann
,
P.
, and
Perlin
,
K.
,
2017
, “
Accelerating Eulerian Fluid Simulation With Convolutional Networks
,”
Proceedings of the 34th International Conference on Machine Learning-Volume 70
,
Sydney, NSW, Australia
,
Aug. 6–11
, JMLR, pp.
3424
3433
.
12.
Farimani
,
A. B.
,
Gomes
,
J.
, and
Pande
,
V. S.
,
2017
, “
Deep Learning the Physics of Transport Phenomena
,” preprint arXiv:1709.02432.
13.
Cang
,
R.
,
Xu
,
Y.
,
Chen
,
S.
,
Liu
,
Y.
,
Jiao
,
Y.
, and
Ren
,
M. Y.
,
2017
, “
Microstructure Representation and Reconstruction of Heterogeneous Materials Via Deep Belief Network for Computational Material Design
,”
ASME J. Mech. Des.
,
139
(
7
), p.
071404
. 10.1115/1.4036649
14.
Yang
,
Z.
,
Li
,
X.
,
Brinson
,
L. C.
,
Choudhary
,
A. N.
,
Chen
,
W.
, and
Agrawal
,
A.
,
2018
, “
Microstructural Materials Design Via Deep Adversarial Learning Methodology
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111416
. 10.1115/1.4041371
15.
Cang
,
R.
,
Li
,
H.
,
Yao
,
H.
,
Jiao
,
Y.
, and
Ren
,
Y.
,
2018
, “
Improving Direct Physical Properties Prediction of Heterogeneous Materials From Imaging Data Via Convolutional Neural Network and a Morphology-Aware Generative Model
,”
Comput. Mater. Sci.
,
150
, pp.
212
221
. 10.1016/j.commatsci.2018.03.074
16.
Burnap
,
A.
,
Pan
,
Y.
,
Liu
,
Y.
,
Ren
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Improving Design Preference Prediction Accuracy Using Feature Learning
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071404
. 10.1115/1.4033427
17.
Pan
,
Y.
,
Burnap
,
A.
,
Hartley
,
J.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2017
, “
Deep Design: Product Aesthetics for Heterogeneous Markets
,”
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Halifax, NS, Canada
,
Aug. 13–17
, ACM, pp.
1961
1970
.
18.
Shea
,
K.
,
Aish
,
R.
, and
Gourtovaia
,
M.
,
2005
, “
Towards Integrated Performance-Driven Generative Design Tools
,”
Autom. Constr.
,
14
(
2
), pp.
253
264
. 10.1016/j.autcon.2004.07.002
19.
Krish
,
S.
,
2011
, “
A Practical Generative Design Method
,”
Comput. Aided Des.
,
43
(
1
), pp.
88
100
. 10.1016/j.cad.2010.09.009
20.
McKnight
,
M.
,
2017
, “
Generative Design: What It Is? How Is It Being Used? Why It’s a Game Changer
,”
KnE Eng.
,
2
(
2
), pp.
176
181
.10.18502/keg.v2i2.612
21.
Matejka
,
J.
,
Glueck
,
M.
,
Bradner
,
E.
,
Hashemi
,
A.
,
Grossman
,
T.
, and
Fitzmaurice
,
G.
,
2018
, “
Dream Lens: Exploration and Visualization of Large-Scale Generative Design Datasets
,”
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
,
Montreal QC, Canada
,
Apr. 21–26
, ACM, p.
369
.
22.
Autodesk
,
2019
, “
Generative Design
,” https://www.autodesk.com/solutions/generative-design
23.
Oh
,
S.
,
Jung
,
Y.
,
Lee
,
I.
, and
Kang
,
N.
,
2018
, “
Design Automation By Integrating Generative Adversarial Networks and Topology Optimization
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Paper No. V02AT03A008.
24.
Kang
,
N.
,
2014
, “
Multidomain Demand Modeling in Design for Market Systems
,”
PhD Thesis
,
University of Michigan
,
Ann Arbor, MI
.
25.
Dering
,
M. L.
, and
Tucker
,
C. S.
,
2017
, “
A Convolutional Neural Network Model for Predicting a Product’s Function, Given Its Form
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111408
. 10.1115/1.4037309
26.
Dering
,
M. L.
, and
Tucker
,
C. S.
,
2017
, “
Generative Adversarial Networks for Increasing the Veracity of Big Data
,”
2017 IEEE International Conference on Big Data (Big Data)
,
Boston, MA
,
Dec. 11–14
, IEEE, pp.
2595
2602
.
27.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
. 10.1016/0045-7825(88)90086-2
28.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
29.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
Berlin
.
30.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
(
2
), pp.
120
127
. 10.1007/s001580050176
31.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
(
4–5
), pp.
401
424
. 10.1007/s00158-006-0087-x
32.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in MATLAB Using 88 Lines of Code
,”
Struct. Multidiscipl. Optim.
,
43
(
1
), pp.
1
16
. 10.1007/s00158-010-0594-7
33.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
. 10.1007/s00158-013-0978-6
34.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
35.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
. 10.1016/S0045-7825(00)00278-4
36.
Bourdin
,
B.
,
2001
, “
Filters in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2143
2158
. 10.1002/nme.116
37.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
. 10.1002/nme.1064
38.
Xu
,
S.
,
Cai
,
Y.
, and
Cheng
,
G.
,
2010
, “
Volume Preserving Nonlinear Density Filter Based on Heaviside Functions
,”
Struct. Multidiscipl. Optim.
,
41
(
4
), pp.
495
505
. 10.1007/s00158-009-0452-7
39.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Advances in Neural Information Processing Systems
,
Palais des Congrès de Montréal, Montréal, Canada
,
Dec. 8–13
, pp.
2672
2680
.
40.
Arjovsky
,
M.
,
Chintala
,
S.
, and
Bottou
,
L.
,
2017
, “
Wasserstein gan
,” preprint arXiv:1701.07875.
41.
Radford
,
A.
,
Metz
,
L.
, and
Chintala
,
S.
,
2016
, “
Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks
,”
ICLR 2016
,
San Juan, Puerto Rico
,
May 2–4
.
42.
Dumoulin
,
V.
,
Belghazi
,
I.
,
Poole
,
B.
,
Mastropietro
,
O.
,
Lamb
,
A.
,
Arjovsky
,
M.
, and
Courville
,
A.
,
2017
, “
Adversarially Learned Inference
,”
ICLR 2017
,
Palais des Congrès Neptune, Toulon, France
,
Apr. 24–26
.
43.
Donahue
,
J.
,
Krähenbühl
,
P.
, and
Darrell
,
T.
,
2017
, “
Adversarial Feature Learning
,”
ICLR 2017
,
Palais des Congrès Neptune, Toulon, FrancePalais des Congrès Neptune, Toulon, France
,
Apr. 24–26
.
44.
Zhao
,
J.
,
Mathieu
,
M.
, and
LeCun
,
Y.
,
2017
, “
Energy-Based Generative Adversarial Network
,”
ICLR 2017
,
Palais des Congrès Neptune, Toulon, France
,
Apr. 24–26
.
45.
Berthelot
,
D.
,
Schumm
,
T.
, and
Metz
,
L.
,
2017
, “
BEGAN: Boundary Equilibrium Generative Adversarial Networks
,” preprint arXiv:1703.10717.
46.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “
Conditional Generative Adversarial Nets
,” preprint arXiv:1411.1784.
47.
Chen
,
X.
,
Duan
,
Y.
,
Houthooft
,
R.
,
Schulman
,
J.
,
Sutskever
,
I.
, and
Abbeel
,
P.
,
2016
, “
Infogan: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
,”
Advances in Neural Information Processing Systems
,
Centre Convencions Internacional Barcelona, Spain
,
Dec. 5–10
, pp.
2172
2180
.
48.
Vertolli
,
M. O.
, and
Davies
,
J.
,
2017
, “
Image Quality Assessment Techniques Show Improved Training and Evaluation of Autoencoder Generative Adversarial Networks
,” preprint arXiv:1708.02237.
49.
Kocaoglu
,
M.
,
Snyder
,
C.
,
Dimakis
,
A. G.
, and
Vishwanath
,
S.
,
2017
, “
Causalgan: Learning Causal Implicit Generative Models With Adversarial Training
,” preprint arXiv:1709.02023.
50.
Sakurada
,
M.
, and
Yairi
,
T.
,
2014
, “
Anomaly Detection Using Autoencoders With Nonlinear Dimensionality Reduction
,”
Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis
,
Gold Coast, Australia QLD, Australia
,
Dec. 2
, ACM, p.
4
.
51.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2015
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
ICLR 2015
,
San Diego, CA
,
May 7–9
.
52.
Heusel
,
M.
,
Ramsauer
,
H.
,
Unterthiner
,
T.
,
Nessler
,
B.
, and
Hochreiter
,
S.
,
2017
, “
GANs Trained By a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
,”
Advances in Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, pp.
6626
6637
.
You do not currently have access to this content.