Abstract

Real-world designs usually consist of parts with interpart dependencies, i.e., the geometry of one part is dependent on one or multiple other parts. We can represent such dependency in a part dependency graph. This paper presents a method for synthesizing these types of hierarchical designs using generative models learned from examples. It decomposes the problem of synthesizing the whole design into synthesizing each part separately but keeping the interpart dependencies satisfied. Specifically, this method constructs multiple generative models, the interaction of which is based on the part dependency graph. We then use the trained generative models to synthesize or explore each part design separately via a low-dimensional latent representation, conditioned on the corresponding parent part(s). We verify our model on multiple design examples with different interpart dependencies. We evaluate our model by analyzing the constraint satisfaction performance, the synthesis quality, the latent space quality, and the effects of part dependency depth and branching factor. This paper’s techniques for capturing dependencies among parts lay the foundation for learned generative models to extend to more realistic engineering systems where such relationships are widespread.

References

References
1.
Chen
,
W.
,
Fuge
,
M.
, and
Chazan
,
N.
,
2017
, “
Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051102
. 10.1115/1.4036134
2.
Chen
,
W.
, and
Fuge
,
M.
,
2017
, “
Beyond the Known: Detecting Novel Feasible Domains Over an Unbounded Design Space
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111405
. 10.1115/1.4037306
3.
Königseder
,
C.
, and
Shea
,
K.
,
2016
, “
Visualizing Relations Between Grammar Rules, Objectives, and Search Space Exploration in Grammar-Based Computational Design Synthesis
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101101
. 10.1115/1.4034270
4.
Königseder
,
C.
,
Stanković
,
T.
, and
Shea
,
K.
,
2016
, “
Improving Design Grammar Development and Application Through Network-Based Analysis of Transition Graphs
,”
Des. Sci.
,
2
, p.
e5
. 10.1017/dsj.2016.5
5.
Chen
,
W.
, and
Fuge
,
M.
,
2018
, “
Active Expansion Sampling for Learning Feasible Domains in an Unbounded Input Space
,”
Struct. Multidiscipl. Optim.
,
57
(
3
), pp.
925
945
. 10.1007/s00158-017-1894-y
6.
Sidi
,
O.
,
van Kaick
,
O.
,
Kleiman
,
Y.
,
Zhang
,
H.
, and
Cohen-Or
,
D.
,
2011
, “
Unsupervised Co-segmentation of a Set of Shapes Via Descriptor-Space Spectral Clustering
,”
ACM Trans. Graph.
,
30
(
6
), p.
126
. 10.1145/2070781
7.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Advances in Neural Information Processing Systems 27
,
Montreal, Canada
,
Dec. 8–13
, Curran Associates, Inc., pp.
2672
2680
.
8.
Samareh
,
J. A.
,
2001
, “
Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization
,”
AIAA J.
,
39
(
5
), pp.
877
884
. 10.2514/2.1391
9.
Bellman
,
R.
,
1957
,
Dynamic Programming
,
Princeton University Press
,
Princeton, NY
.
10.
Diez
,
M.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2015
, “
Design-Space Dimensionality Reduction in Shape Optimization by Karhunen–Loève Expansion
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
1525
1544
. 10.1016/j.cma.2014.10.042
11.
Chen
,
X.
,
Diez
,
M.
,
Kandasamy
,
M.
,
Zhang
,
Z.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2015
, “
High-Fidelity Global Optimization of Shape Design by Dimensionality Reduction, Metamodels and Deterministic Particle Swarm
,”
Eng. Optim.
,
47
(
4
), pp.
473
494
. 10.1080/0305215X.2014.895340
12.
D’Agostino
,
D.
,
Serani
,
A.
,
Campana
,
E. F.
, and
Diez
,
M.
,
2017
, “
Nonlinear Methods for Design-Space Dimensionality Reduction in Shape Optimization
,”
Proceedings of the Third International Workshop on Machine Learning, Optimization, and Big Data, MOD 2017
,
Volterra, Italy
,
Sept. 14–17
, Springer International Publishing, pp.
121
132
.
13.
Tezzele
,
M.
,
Salmoiraghi
,
F.
,
Mola
,
A.
, and
Rozza
,
G.
,
2018
, “
Dimension Reduction in Heterogeneous Parametric Spaces With Application to Naval Engineering Shape Design Problems
,”
Adv. Model. Simul. Eng. Sci.
,
5
(
1
), p.
25
. 10.1186/s40323-018-0118-3
14.
Raghavan
,
B.
,
Breitkopf
,
P.
,
Tourbier
,
Y.
, and
Villon
,
P.
,
2013
, “
Towards a Space Reduction Approach for Efficient Structural Shape Optimization
,”
Struct. Multidiscipl. Optim.
,
48
(
5
), pp.
987
1000
. 10.1007/s00158-013-0942-5
15.
Raghavan
,
B.
,
Xia
,
L.
,
Breitkopf
,
P.
,
Rassineux
,
A.
, and
Villon
,
P.
,
2013
, “
Towards Simultaneous Reduction of Both Input and Output Spaces for Interactive Simulation-Based Structural Design
,”
Comput. Methods Appl. Mech. Eng.
,
265
, pp.
174
185
. 10.1016/j.cma.2013.06.010
16.
Raghavan
,
B.
,
Le Quilliec
,
G.
,
Breitkopf
,
P.
,
Rassineux
,
A.
,
Roelandt
,
J.-M.
, and
Villon
,
P.
,
2014
, “
Numerical Assessment of Springback for the Deep Drawing Process by Level Set Interpolation Using Shape Manifolds
,”
Int. J. Mater. Form.
,
7
(
4
), pp.
487
501
. 10.1007/s12289-013-1145-8
17.
Le Quilliec
,
G.
,
Raghavan
,
B.
, and
Breitkopf
,
P.
,
2015
, “
A Manifold Learning-Based Reduced Order Model for Springback Shape Characterization and Optimization in Sheet Metal Forming
,”
Comput. Methods Appl. Mech. Eng.
,
285
, pp.
621
638
. 10.1016/j.cma.2014.11.029
18.
Viswanath
,
A.
, and
Keane
,
A.
,
2011
, “
Dimension Reduction for Aerodynamic Design Optimization
,”
AIAA J.
,
49
(
6
), pp.
1256
1266
. 10.2514/1.J050717
19.
Qiu
,
H.
,
Xu
,
Y.
,
Gao
,
L.
,
Li
,
X.
, and
Chi
,
L.
,
2016
, “
Multi-Stage Design Space Reduction and Metamodeling Optimization Method Based on Self-Organizing Maps and Fuzzy Clustering
,”
Exp. Syst. Appl.
,
46
, pp.
180
195
. 10.1016/j.eswa.2015.10.033
20.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
,”
ASME. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, American Society of Mechanical Engineers, p.
V02AT03A013
.
21.
D’Agostino
,
D.
,
Serani
,
A.
,
Campana
,
E. F.
, and
Diez
,
M.
,
2018
, “
Deep Autoencoder for Off-Line Design-Space Dimensionality Reduction in Shape Optimization
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 8–12
, p.
1648
.
22.
Gmeiner
,
T.
, and
Shea
,
K.
,
2013
, “
A Spatial Grammar for the Computational Design Synthesis of Vise Jaws
,”
ASME. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
, American Society of Mechanical Engineers, p.
V03AT03A006
.
23.
Talton
,
J. O.
,
Gibson
,
D.
,
Yang
,
L.
,
Hanrahan
,
P.
, and
Koltun
,
V.
,
2009
, “
Exploratory Modeling With Collaborative Design Spaces
,”
ACM Trans. Graph.
,
28
(
5
), p.
167
. 10.1145/1618452
24.
Huang
,
H.
,
Kalogerakis
,
E.
, and
Marlin
,
B.
,
2015
, “
Analysis and Synthesis of 3D Shape Families Via Deep-Learned Generative Models of Surfaces
,”
Comput. Graph. Forum
,
34
(
5
), pp.
25
38
. 10.1111/cgf.2015.34.issue-5
25.
Nash
,
C.
, and
Williams
,
C. K.
,
2017
, “
The Shape Variational Autoencoder: A Deep Generative Model of Part-Segmented 3D Objects
,”
Comput. Graph. Forum
,
36
(
5
), pp.
1
12
. 10.1111/cgf.2017.36.issue-5
26.
Wu
,
J.
,
Zhang
,
C.
,
Xue
,
T.
,
Freeman
,
B.
, and
Tenenbaum
,
J.
,
2016
, “
Learning a Probabilistic Latent Space of Object Shapes Via 3D Generative-Adversarial Modeling
,”
Advances in Neural Information Processing Systems 29
,
Barcelona, Spain
,
Dec. 5–10
, Curran Associates, Inc., pp.
82
90
.
27.
Li
,
J.
,
Xu
,
K.
,
Chaudhuri
,
S.
,
Yumer
,
E.
,
Zhang
,
H.
, and
Guibas
,
L.
,
2017
, “
Grass: Generative Recursive Autoencoders for Shape Structures
,”
ACM Trans. Graph.
,
36
(
4
), p.
52
.
28.
Sinha
,
A.
,
Unmesh
,
A.
,
Huang
,
Q.
, and
Ramani
,
K.
,
2017
, “
Surfnet: Generating 3D Shape Surfaces Using Deep Residual Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
6040
6049
.
29.
Chaudhuri
,
S.
,
Kalogerakis
,
E.
,
Guibas
,
L.
, and
Koltun
,
V.
,
2011
, “
Probabilistic Reasoning for Assembly-Based 3D Modeling
,”
ACM Trans. Graph.
,
30
(
4
), p.
35
. 10.1145/2010324
30.
Kalogerakis
,
E.
,
Chaudhuri
,
S.
,
Koller
,
D.
, and
Koltun
,
V.
,
2012
, “
A Probabilistic Model for Component-Based Shape Synthesis
,”
ACM Trans. Graph.
,
31
(
4
), p.
55
. 10.1145/2185520
31.
Talton
,
J.
,
Yang
,
L.
,
Kumar
,
R.
,
Lim
,
M.
,
Goodman
,
N.
, and
Měch
,
R.
,
2012
, “
Learning Design Patterns With Bayesian Grammar Induction
,”
Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (UIST’12)
,
Cambridge, MA
,
Oct. 7–10
, ACM, pp.
63
74
.
32.
Xu
,
K.
,
Zhang
,
H.
,
Cohen-Or
,
D.
, and
Chen
,
B.
,
2012
, “
Fit and Diverse: Set Evolution for Inspiring 3D Shape Galleries
,”
ACM Trans. Graph.
,
31
(
4
), p.
57
. 10.1145/2185520
33.
Zheng
,
Y.
,
Cohen-Or
,
D.
, and
Mitra
,
N. J.
,
2013
, “
Smart Variations: Functional Substructures for Part Compatibility
,”
Comput. Graph. Forum
,
32
(
2pt2
), pp.
195
204
. 10.1111/cgf.2013.32.issue-2pt2
34.
Fish
,
N.
,
Averkiou
,
M.
,
Van Kaick
,
O.
,
Sorkine-Hornung
,
O.
,
Cohen-Or
,
D.
, and
Mitra
,
N. J.
,
2014
, “
Meta-Representation of Shape Families
,”
ACM Trans. Graph.
,
33
(
4
), p.
34
. 10.1145/2601097
35.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Auto-Encoding Variational Bayes
,”
Proceedings of the 2nd International Conference on Learning Representations
,
Banff, Canada
,
Apr. 14–16
.
36.
Radford
,
A.
,
Metz
,
L.
, and
Chintala
,
S.
,
2015
, “
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
,”
Proceedings of the 4th International Conference on Learning Representations
,
San Juan, PR
,
May 2–4
.
37.
Chen
,
X.
,
Duan
,
Y.
,
Houthooft
,
R.
,
Schulman
,
J.
,
Sutskever
,
I.
, and
Abbeel
,
P.
,
2016
, “
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
,”
Advances in Neural Information Processing Systems
,
Barcelona, Spain
,
Dec. 5–10
, pp.
2172
2180
.
38.
Wang
,
X.
, and
Gupta
,
A.
,
2016
, “
Generative Image Modeling Using Style and Structure Adversarial Networks
,”
European Conference on Computer Vision
,
Amsterdam, The Netherlands
,
Oct. 8–16
, Springer, pp.
318
335
.
39.
Ohnishi
,
K.
,
Yamamoto
,
S.
,
Ushiku
,
Y.
, and
Harada
,
T.
,
2018
, “
Hierarchical Video Generation From Orthogonal Information: Optical Flow and Texture
,”
Thirty-Second AAAI Conference on Artificial Intelligence
,
New Orleans, LA
,
Feb. 2–7
.
40.
Gielis
,
J.
,
2003
, “
A Generic Geometric Transformation That Unifies a Wide Range of Natural and Abstract Shapes
,”
Am. J. Bot.
,
90
(
3
), pp.
333
338
. 10.3732/ajb.90.3.333
41.
Chen
,
W.
, and
Fuge
,
M.
,
2018
, “
Béziergan: Automatic Generation of Smooth Curves From Interpretable Low-Dimensional Parameters
,” e-print arXiv:1808.08871.
42.
Chen
,
W.
,
Chiu
,
K.
, and
Fuge
,
M.
,
2019
, “
Aerodynamic Design Optimization and Shape Exploration Using Generative Adversarial Networks
,”
AIAA 2019 Science and Technology Forum and Exposition, AIAA No. 2019-2351
.
43.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
Proceedings of the 3rd International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
.
44.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Goodfellow
,
I.
,
Harp
,
A.
,
Irving
,
G.
,
Isard
,
M.
,
Jia
,
Y.
,
Jozefowicz
,
R.
,
Kaiser
,
L.
,
Kudlur
,
M.
,
Levenberg
,
J.
,
Mané
,
D.
,
Monga
,
R.
,
Moore
,
S.
,
Murray
,
D.
,
Olah
,
C.
,
Schuster
,
M.
,
Shlens
,
J.
,
Steiner
,
B.
,
Sutskever
,
I.
,
Talwar
,
K.
,
Tucker
,
P.
,
Vanhoucke
,
V.
,
Vasudevan
,
V.
,
Viégas
,
F.
,
Vinyals
,
O.
,
Warden
,
P.
,
Wattenberg
,
M.
,
Wicke
,
M.
,
Yu
,
Y.
, and
Zheng
,
X.
,
2015
, “
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
,” Software, tensorflow.org.
45.
Gretton
,
A.
,
Borgwardt
,
K. M.
,
Rasch
,
M. J.
,
Schölkopf
,
B.
, and
Smola
,
A.
,
2012
, “
A Kernel Two-Sample Test
,”
J. Mach. Learn. Res.
,
13
(
Mar.
), pp.
723
773
.
46.
Higgins
,
I.
,
Matthey
,
L.
,
Pal
,
A.
,
Burgess
,
C.
,
Glorot
,
X.
,
Botvinick
,
M.
,
Mohamed
,
S.
, and
Lerchner
,
A.
,
2017
, “
Beta-VAE: Learning Basic Visual Concepts With a Constrained Variational Framework
,”
Proceedings of the 5th International Conference on Learning Representations
,
Toulon, France
,
Apr. 24–26
.
47.
Kim
,
H.
, and
Mnih
,
A.
,
2018
, “
Disentangling by Factorising
,”
Proceedings of the 35th International Conference on Machine Learning (ICML)
,
Stockholm, Sweden
,
July 10–15
, pp.
2649
2658
.
48.
Chen
,
T. Q.
,
Li
,
X.
,
Grosse
,
R. B.
, and
Duvenaud
,
D. K.
,
2018
, “
Isolating Sources of Disentanglement in Variational Autoencoders
,”
Advances in Neural Information Processing Systems 31
,
Montreal, Canada
,
Dec. 2–8
, Curran Associates, Inc., pp.
2610
2620
.
49.
Guo
,
T.
,
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
Circuit Synthesis Using Generative Adversarial Networks (GANs)
,”
AIAA 2019 Science and Technology Forum and Exposition, AIAA No. 2019-2350
.
You do not currently have access to this content.