Abstract

In this paper, a generative design approach is proposed that involves the users’ psychological aspect in the design space exploration stage to create distinct design alternatives. Users’ perceptual judgment about designs is extracted as a psycho-physical distance metric, which is then integrated into the design exploration step to generate design alternatives for the parametric computer-aided design (CAD) shapes. To do this, a CAD model is first parametrized by defining geometric parameters and determining ranges of these parameters. Initial design alternatives for the CAD model are generated using Euclidean distance-based sampling teaching–learning-based optimization (S-TLBO), which is recently proposed and can sample N space-filling design alternatives in the design space. Similar designs are then clustered, and a user study is conducted to capture the subjects’ perceptual response for the dissimilarities between the cluster pairs. In addition, a furthest-point-sorting technique is introduced to equalize the number of designs in the clusters, which are being compared by the subjects in the user study. Afterward, nonlinear regression analyses are carried out to construct a mathematical correlation between the subjects’ perceptual response and geometric parameters in the form of a psycho-physical distance metric. Finally, a psycho-physical distance metric obtained is utilized to explore distinct design alternatives for the CAD model. Another user study is designed to compare the diversification between the designs when the Euclidean and the suggested psycho-physical distance metrics are utilized. According to the user study, designs generated with the latter metric are more distinct.

References

1.
Khan
,
S.
, and
Awan
,
M. J.
,
2018
, “
A Generative Design Technique for Exploring Shape Variations
,”
Adv. Eng. Inform.
,
38
, pp.
712
724
. 10.1016/j.aei.2018.10.005
2.
Krish
,
S.
,
2011
, “
A Practical Generative Design Method
,”
Comput. Aided Des.
,
43
(
1
), pp.
88
100
. 10.1016/j.cad.2010.09.009
3.
Khan
,
S.
, and
Gunpinar
,
E.
,
2018
, “
Sampling Cad Models Via an Extended Teaching–Learning-Based Optimization Technique
,”
Comput. Aided Des.
,
100
, pp.
52
67
. 10.1016/j.cad.2018.03.003
4.
Rao
,
R. V.
,
Savsani
,
V. J.
, and
Vakharia
,
D.
,
2011
, “
Teaching–Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems
,”
Comput. Aided Des.
,
43
(
3
), pp.
303
315
. 10.1016/j.cad.2010.12.015
5.
Gunpinar
,
E.
,
Coskun
,
U. C.
,
Ozsipahi
,
M.
, and
Gunpinar
,
S.
,
2019
, “
A Generative Design and Drag Coefficient Prediction System for Sedan Car Side Silhouettes Based on Computational Fluid Dynamics
,”
Comput. Aided Des.
,
111
, pp.
65
79
. 10.1016/j.cad.2019.02.003
6.
Patel
,
S. V.
,
Tam
,
M. K.
, and
Mueller
,
C. T.
,
2016
,
Design Computing and Cognition’16
, June 27–29, Northwestern University, Evanston, IL,
J. S.
Gero
, ed.,
Springer
,
New York
, pp.
477
494
.
7.
Kazi
,
R. H.
,
Grossman
,
T.
,
Cheong
,
H.
,
Hashemi
,
A.
, and
Fitzmaurice
,
G.
,
2017
, “
Dreamsketch: Early Stage 3D Design Explorations With Sketching and Generative Design
,”
Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology
,
Quebec City, Canada
,
Oct. 22–25
, pp.
401
414
.
8.
Gunpinar
,
E.
, and
Gunpinar
,
S.
,
2018
, “
A Shape Sampling Technique Via Particle Tracing for CAD Models
,”
Graphical Models
,
96
, pp.
11
29
. 10.1016/j.gmod.2018.01.003
9.
Hornby
,
G. S.
,
2004
, “
Functional Scalability Through Generative Representations: The Evolution of Table Designs
,”
Environ. Plann. B Plann. Des.
,
31
(
4
), pp.
569
587
. 10.1068/b3015
10.
Barros
,
M.
,
Duarte
,
J. P.
, and
Chaparro
,
B.
,
2014
, “Integrated Generative Design Tools for the Mass Customization of Furniture,”
Design Computing and Cognition’12
, June 7–9, Texas A&M University, College Station, TX,
J. S.
Gero
, ed.,
Springer
,
Dordrecht
, pp.
285
300
.
11.
Khan
,
S.
,
Gunpinar
,
E.
, and
Moriguchi
,
M.
,
2017
, “
Customer-Centered Design Sampling for CAD Products Using Spatial Simulated Annealing
,”
Proceedings of CAD’17
,
Okayama, Japan
,
June 24–26
, pp.
100
103
.
12.
Shea
,
K.
,
Aish
,
R.
, and
Gourtovaia
,
M.
,
2005
, “
Towards Integrated Performance-Driven Generative Design Tools
,”
Autom. Constr.
,
14
(
2
), pp.
253
264
. 10.1016/j.autcon.2004.07.002
13.
Turrin
,
M.
,
Von Buelow
,
P.
, and
Stouffs
,
R.
,
2011
, “
Design Explorations of Performance Driven Geometry in Architectural Design Using Parametric Modeling and Genetic Algorithms
,”
Adv. Eng. Inform.
,
25
(
4
), pp.
656
675
. 10.1016/j.aei.2011.07.009
14.
Janssen
,
P.
,
2015
, “
Dexen: A Scalable and Extensible Platform for Experimenting With Population-Based Design Exploration Algorithms
,”
AI EDAM
,
29
(
4
), pp.
443
455
. 10.1017/s0890060415000438
15.
Troiano
,
L.
, and
Birtolo
,
C.
,
2014
, “
Genetic Algorithms Supporting Generative Design of User Interfaces: Examples
,”
Information Sci.
,
259
, pp.
433
451
. 10.1016/j.ins.2012.01.006
16.
Kitchley
,
J. J. L.
, and
Srivathsan
,
A.
,
2014
, “
Generative Methods and the Design Process: A Design Tool for Conceptual Settlement Planning
,”
Appl. Soft Comput.
,
14
, pp.
634
652
. 10.1016/j.asoc.2013.08.017
17.
Caldas
,
L.
,
2008
, “
Generation of Energy-Efficient Architecture Solutions Applying Gene_arch: An Evolution-Based Generative Design System
,”
Adv. Eng. Inform.
,
22
(
1
), pp.
59
70
. 10.1016/j.aei.2007.08.012
18.
Stiny
,
G.
,
1980
, “
Introduction to Shape and Shape Grammars
,”
Environ. Plann. B Plann. Des.
,
7
(
3
), pp.
343
351
. 10.1068/b070343
19.
Prusinkiewicz
,
P.
,
Shirmohammadi
,
M.
, and
Samavati
,
F.
,
2012
, “
L-Systems in Geometric Modeling
,”
Int. J. Found. Comput. Sci.
,
23
(
1
), pp.
133
146
. 10.1142/S0129054112400096
20.
Kalogerakis
,
E.
,
Chaudhuri
,
S.
,
Koller
,
D.
, and
Koltun
,
V.
,
2012
, “
A Probabilistic Model for Component-Based Shape Synthesis
,”
ACM Trans. Graph.
,
31
(
4
), p.
55
. 10.1145/2185520
21.
Chaudhuri
,
S.
,
Kalogerakis
,
E.
,
Giguere
,
S.
, and
Funkhouser
,
T.
,
2013
, “
Attribit: Content Creation with Semantic Attributes
,”
Proceedings of the 26th Annual ACM Symposium on User interface Software and Technology
, pp.
193
202
. 10.1145/2501988.2502008
22.
Granadeiro
,
V.
,
Pina
,
L.
,
Duarte
,
J. P.
,
Correia
,
J. R.
, and
Leal
,
V. M.
,
2013
, “
A General Indirect Representation for Optimization of Generative Design Systems by Genetic Algorithms: Application to a Shape Grammar-Based Design System
,”
Autom. Constr.
,
35
, pp.
374
382
. 10.1016/j.autcon.2013.05.012
23.
McCormack
,
J. P.
, and
Cagan
,
J.
,
2002
, “
Designing Inner Hood Panels Through a Shape Grammar Based Framework
,”
AI EDAM
,
16
(
4
), pp.
273
290
. 10.1017/s089006040216402x
24.
Cui
,
J.
, and
Tang
,
M.-X.
,
2013
, “
Integrating Shape Grammars Into a Generative System for Zhuang Ethnic Embroidery Design Exploration
,”
Comput. Aided Des.
,
45
(
3
), pp.
591
604
. 10.1016/j.cad.2012.08.002
25.
Zimmermann
,
L.
,
Chen
,
T.
, and
Shea
,
K.
,
2018
, “
A 3D, Performance-Driven Generative Design Framework: Automating the Link From a 3D Spatial Grammar Interpreter to Structural Finite Element Analysis and Stochastic Optimization
,”
AI EDAM
,
32
(
2
), pp.
189
199
. 10.1017/s0890060417000324
26.
Singh
,
V.
, and
Gu
,
N.
,
2012
, “
Towards an Integrated Generative Design Framework
,”
Des. Stud.
,
33
(
2
), pp.
185
207
. 10.1016/j.destud.2011.06.001
27.
Palubicki
,
W.
,
Horel
,
K.
,
Longay
,
S.
,
Runions
,
A.
,
Lane
,
B.
,
Měch
,
R.
, and
Prusinkiewicz
,
P.
,
2009
, “
Self-Organizing Tree Models for Image Synthesis
,”
ACM Trans. Graph.
,
28
(
3
), p.
58
. 10.1145/1531326
28.
Marvie
,
J.-E.
,
Perret
,
J.
, and
Bouatouch
,
K.
,
2005
, “
The Fl-System: A Functional L-System for Procedural Geometric Modeling
,”
Visual Comput.
,
21
(
5
), pp.
329
339
. 10.1007/s00371-005-0289-z
29.
Dogan
,
K. M.
,
Suzuki
,
H.
,
Gunpinar
,
E.
, and
Kim
,
M.-S.
,
2019
, “
A Generative Sampling System for Profile Designs With Shape Constraints and User Evaluation
,”
Comput. Aided Des.
,
111
, pp.
93
112
. 10.1016/j.cad.2019.02.002
30.
Dev
,
K.
,
Lau
,
M.
, and
Liu
,
L.
, “
A Perceptual Aesthetics Measure for 3D Shapes
,” preprint arXiv:1608.04953.
31.
Liu
,
T.
,
Hertzmann
,
A.
,
Li
,
W.
, and
Funkhouser
,
T.
,
2015
, “
Style Compatibility for 3D Furniture Models
,”
ACM Trans. Graph.
,
34
(
4
), p.
85
. 10.1145/2809654
32.
Lim
,
I.
,
Gehre
,
A.
, and
Kobbelt
,
L.
,
2016
, “
Identifying Style of 3D Shapes Using Deep Metric Learning
,”
Computer Graphics Forum
, Vol.
35
,
Wiley Online Library
, pp.
207
215
. 10.1111/cgf.12977
33.
Secord
,
A.
,
Lu
,
J.
,
Finkelstein
,
A.
,
Singh
,
M.
, and
Nealen
,
A.
,
2011
, “
Perceptual Models of Viewpoint Preference
,”
ACM Trans. Graph.
,
30
(
5
), p.
109
. 10.1145/2019627
34.
Zhang
,
X.
,
Le
,
X.
,
Panotopoulou
,
A.
,
Whiting
,
E.
, and
Wang
,
C. C.
,
2015
, “
Perceptual Models of Preference in 3D Printing Direction
,”
ACM Trans. Graph.
,
34
(
6
), p.
215
. 10.1145/2816795
35.
Hoshyari
,
S.
,
Dominici
,
E. A.
,
Sheffer
,
A.
,
Carr
,
N.
,
Wang
,
Z.
,
Ceylan
,
D.
,
Wang
,
Z.
, and
Shen
,
I.
,
2018
, “
Perception-Driven Semi-Structured Boundary Vectorization
,”
ACM Trans. Graph.
,
37
(
4
), p.
118
. 10.1145/3197517
36.
Tseng
,
I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2012
, “
Concurrent Optimization of Computationally Learned Stylistic Form and Functional Goals
,”
ASME J. Mech. Des.
,
134
(
11
), p.
111006
. 10.1115/1.4007304
37.
Tseng
,
I.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
M.
,
2013
, “
Form Function Fidelity
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011006
. 10.1115/1.4007933
38.
Chen
,
H.-Y.
, and
Chang
,
Y.-M.
,
2009
, “
Extraction of Product Form Features Critical to Determining Consumers’ Perceptions of Product Image Using a Numerical Definition-Based Systematic Approach
,”
Int. J. Indus. Ergon.
,
39
(
1
), pp.
133
145
. 10.1016/j.ergon.2008.04.007
39.
Lin
,
L.
,
Yang
,
M.-Q.
,
Li
,
J.
, and
Wang
,
Y.
,
2012
, “
A Systematic Approach for Deducing Multi-Dimensional Modeling Features Design Rules Based on User-Oriented Experiments
,”
Int. J. Indus. Ergon.
,
42
(
4
), pp.
347
358
. 10.1016/j.ergon.2012.03.005
40.
Dogan
,
K. M.
, and
Gunpinar
,
E.
,
2017
, “
Learning Yacht Hull Adjectives and Their Relationship With Hull Surface Geometry Using Gmdh-type Neural Networks for Human Oriented Smart Design
,”
Ocean Eng.
,
145
, pp.
215
229
. 10.1016/j.oceaneng.2017.08.056
41.
Mata
,
M. P.
,
Ahmed-Kristensen
,
S.
,
Brockhoff
,
P. B.
, and
Yanagisawa
,
H.
,
2017
, “
Investigating the Influence of Product Perception and Geometric Features
,”
Res. Eng. Des.
,
28
(
3
), pp.
357
379
. 10.1007/s00163-016-0244-1
42.
Kelly
,
J. C.
,
Maheut
,
P.
,
Petiot
,
J.-F.
, and
Papalambros
,
P. Y.
,
2011
, “
Incorporating User Shape Preference in Engineering Design Optimisation
,”
J. Eng. Des.
,
22
(
9
), pp.
627
650
. 10.1080/09544821003662601
43.
Villa
,
C.
, and
Labayrade
,
R.
,
2014
, “
Solving Complex Design Problems Through Multiobjective Optimisation Taking Into Account Judgements of Users
,”
Res. Eng. Des.
,
25
(
3
), pp.
223
239
. 10.1007/s00163-014-0176-6
44.
Barnum
,
G. J.
, and
Mattson
,
C. A.
,
2010
, “
A Computationally Assisted Methodology for Preference-Guided Conceptual Design
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121003
. 10.1115/1.4002838
45.
Orsborn
,
S.
,
Cagan
,
J.
, and
Boatwright
,
P.
,
2009
, “
Quantifying Aesthetic Form Preference in a Utility Function
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061001
. 10.1115/1.3116260
46.
Poirson
,
E.
,
Petiot
,
J.-F.
,
Boivin
,
L.
, and
Blumenthal
,
D.
,
2013
, “
Eliciting User Perceptions Using Assessment Tests Based on An Interactive Genetic Algorithm
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031004
. 10.1115/1.4023282
47.
Gu
,
Z.
,
Tang
,
M. X.
, and
Frazer
,
J. H.
,
2006
, “
Capturing Aesthetic Intention During Interactive Evolution
,”
Computer-Aided Des.
,
38
(
3
), pp.
224
237
. 10.1016/j.cad.2005.10.008
48.
Fuerle
,
F.
, and
Sienz
,
J.
,
2011
, “
Formulation of the Audze–Eglais Uniform Latin Hypercube Design of Experiments for Constrained Design Spaces
,”
Adv. Eng. Softw.
,
42
(
9
), pp.
680
689
. 10.1016/j.advengsoft.2011.05.004
49.
Cioppa
,
T. M.
, and
Lucas
,
T. W.
,
2007
, “
Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes
,”
Technometrics
,
49
(
1
), pp.
45
55
. 10.1198/004017006000000453
50.
Trosset
,
M. W.
,
1999
, “
Approximate Maximin Distance Designs
,”
Proceedings of the Section on Physical and Engineering Sciences
, pp.
223
227
.
51.
Stinstra
,
E.
,
den Hertog
,
D.
,
Stehouwer
,
P.
, and
Vestjens
,
A.
,
2003
, “
Constrained Maximin Designs for Computer Experiments
,”
Technometrics
,
45
(
4
), pp.
340
346
. 10.1198/004017003000000168
52.
Draguljić
,
D.
,
Santner
,
T. J.
, and
Dean
,
A. M.
,
2012
, “
Noncollapsing Space-Filling Designs for Bounded Nonrectangular Regions
,”
Technometrics
,
54
(
2
), pp.
169
178
. 10.1080/00401706.2012.676951
53.
Audze
,
P.
, and
Eglais
,
V.
,
1977
, “
New Approach for Planning Out of Experiments
,”
Prob. Dyn. Strengths
,
35
, pp.
104
107
.
54.
Camba
,
J. D.
,
Contero
,
M.
, and
Company
,
P.
,
2016
, “
Parametric CAD Modeling: An Analysis of Strategies for Design Reusability
,”
Comput. Aided Des.
,
74
, pp.
18
31
. 10.1016/j.cad.2016.01.003
55.
Hoffmann
,
C. M.
, and
Kim
,
K.-J.
,
2001
, “
Towards Valid Parametric CAD Models
,”
Comput. Aided Des.
,
33
(
1
), pp.
81
90
. 10.1016/S0010-4485(00)00073-7
56.
Cagan
,
J.
,
Campbell
,
M. I.
,
Finger
,
S.
, and
Tomiyama
,
T.
,
2005
, “
A Framework for Computational Design Synthesis: Model and Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
171
181
. 10.1115/1.2013289
57.
Gan
,
G.
,
Ma
,
C.
, and
Wu
,
J.
,
2007
,
Data Clustering: Theory, Algorithms, and Applications
, Vol.
20
,
Siam
,
Philadelphia, PA
.
58.
Ketchen
,
D. J., Jr.
, and
Shook
,
C. L.
,
1996
, “
The Application of Cluster Analysis in Strategic Management Research: An Analysis and Critique
,”
Strategic Manag. J.
,
17
(
6
), pp.
441
458
. 10.1002/(ISSN)1097-0266
59.
Seber
,
G. A. F.
, and
Wild
,
C. J.
,
2013
,
Nonlinear Regression
,
John Wiley & Sons Inc
.,
New York
.
60.
Schwaab
,
M.
,
Biscaia
,
E. C., Jr.
,
Monteiro
,
J. L.
, and
Pinto
,
J. C.
,
2008
, “
Nonlinear Parameter Estimation Through Particle Swarm Optimization
,”
Chem. Eng. Sci.
,
63
(
6
), pp.
1542
1552
. 10.1016/j.ces.2007.11.024
61.
Kapanoglu
,
M.
,
Ozan Koc
,
I.
, and
Erdogmus
,
S.
,
2007
, “
Genetic Algorithms in Parameter Estimation for Nonlinear Regression Models: An Experimental Approach
,”
J. Stat. Comput. Simul.
,
77
(
10
), pp.
851
867
. 10.1080/10629360600688244
62.
Khan
,
S.
,
Gunpinar
,
E.
, and
Dogan
,
K. M.
,
2017
, “
A Novel Design Framework for Generation and Parametric Modification of Yacht Hull Surfaces
,”
Ocean Eng.
,
136
, pp.
243
259
. 10.1016/j.oceaneng.2017.03.013
63.
Fushiki
,
T.
,
2011
, “
Estimation of Prediction Error by Using K-Fold Cross-Validation
,”
Stat. Comput.
,
21
(
2
), pp.
137
146
. 10.1007/s11222-009-9153-8
64.
Specht
,
D. F.
,
1991
, “
A General Regression Neural Network
,”
IEEE Trans. Neural Netw.
,
2
(
6
), pp.
568
576
. 10.1109/72.97934
65.
Sheldon
,
M. R.
,
Fillyaw
,
M. J.
, and
Thompson
,
W. D.
,
1996
, “
The Use and Interpretation of the Friedman Test in the Analysis of Ordinal-Scale Data in Repeated Measures Designs
,”
Physiother. Res. Int.
,
1
(
4
), pp.
221
228
. 10.1002/(ISSN)1471-2865
You do not currently have access to this content.