A novel two degree-of-freedom (2-DOF) parallel mechanism with remote center-of-motion (RCM) is proposed for minimally invasive surgical applications in this paper. A surgical manipulator with expected three-rotation and one-translation (3R1T) outputs can be obtained by serially connecting a revolute pair (R) and a prismatic pair (P) to the mechanism. First, kinematics of the new mechanism is analyzed and the corresponding velocity Jacobin matrix is established. Then, singularity identification of the mechanism is performed based on screw theory. Further, main dimensions of the mechanism are designed, and a physical prototype is developed to verify the effectiveness of executing RCM. The proposed mechanism has relatively simple kinematics, and can obtain a noninterference and nonsingularity cone workspace with the top angle of 60 deg based on a compact structure.

References

References
1.
Guthart
,
G. S.
, and
Salisbury
,
J. K.
, Jr.
,
2000
, “
The Intuitive Tm Telesurgery System: Overview and Application
,”
Proc. IEEE International Conference on Robotics and Automation (ICRA)
,
San Francisco, CA
,
Apr. 24–28
, Vol.
611
, pp.
618
621
.
2.
Taylor
,
R. H.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer-Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
.
3.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comp. Assis. Surg.
,
8
(
2
), p.
127
.
4.
Lum
,
M. J. H.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2004
, “
Kinematic Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
New Orleans, LA
,
Apr. 26–May 1
, Vol.
821
, pp.
829
834
.
5.
Lum
,
M. J.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2006
, “
Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches
,”
IEEE Trans. Biomed. Eng.
,
53
(
7
), pp.
1440
1445
.
6.
Zemiti
,
N.
,
Morel
,
G.
,
Ortmaier
,
T.
, and
Bonnet
,
N.
,
2007
, “
Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery
,”
IEEE/ASME Trans. Mech.
,
12
(
2
), pp.
143
153
.
7.
Zhang
,
X.
, and
Nelson
,
C. A.
,
2008
, “
Kinematic Analysis and Optimization of a Novel Robot for Surgical Tool Manipulation
,”
ASME J. Med. Devices
,
2
(
2
), p.
021003
.
8.
Zong
,
G.
,
Pei
,
X.
,
Yu
,
J.
, and
Bi
,
S.
,
2008
, “
Classification and Type Synthesis of 1-Dof Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1585
1595
.
9.
Li
,
J.
,
Zhang
,
G.
,
Xing
,
Y.
,
Liu
,
H.
, and
Wang
,
S.
,
2014
, “
A Class of 2-Degree-of-Freedom Planar Remote Center-of-Motion Mechanisms Based on Virtual Parallelograms
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031014
.
10.
Wittchen
,
J. D.
, and
Podhorodeski
,
R. P.
,
2001
, “
Comparison of Abdominal-Wall Stretching Between Basic and Enhanced Laparoscopic Instruments
,”
J. Rob. Syst.
,
18
(
10
), pp.
563
576
.
11.
Taniguchi
,
K.
,
Nishikawa
,
A.
,
Yohdaa
,
T.
,
Sekimoto
,
M.
,
Yasui
,
M.
,
Takiguchi
,
S.
,
Seki
,
Y.
,
Monden
,
M.
, and
Miyazaki
,
F.
,
2006
, “
Cover: Compact Oblique-Viewing Endoscope Robot for Laparoscopic Surgery
,”
Int. J. Comp. Assis. Radiol. Surg.
,
1
(
6
), pp.
207
209
.
12.
Huang
,
L.
,
Guang
,
C.
,
Yang
,
Y.
, and
Su
,
P.
,
2016
, “
Type Synthesis of Parallel 2r1t Remote Center of Motion Mechanisms Based on Screw Theory
,”
Proceedings of the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME)
,
Shanghai, China
,
Oct. 21–23
, Vol.
95
, p.
08009
.
13.
Chung
,
J.
,
Cha
,
H.-J.
,
Yi
,
B.-J.
, and
Kim
,
W. K.
,
2010
, “
Implementation of a 4-Dof Parallel Mechanism as a Needle Insertion Device
,”
Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA)
,
Anchorage, AK
,
May 3–7
, pp.
662
668
.
14.
Kuo
,
C.-H.
, and
Dai
,
J. S.
,
2012
, “
Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
6
(
2
), p.
021008
.
15.
Navarro
,
J. S.
,
Garcia
,
N.
,
Perez
,
C.
,
Fernandez
,
E.
,
Saltaren
,
R.
, and
Almonacid
,
M.
,
2010
, “
Kinematics of a Robotic 3ups1s Spherical Wrist Designed for Laparoscopic Applications
,”
Int. J. Med. Rob. Comp. Assis. Surg.
,
6
(
3
), pp.
291
300
.
16.
Puglisi
,
L. J.
,
Saltaren
,
R. J.
,
Portolés
,
G. R.
,
Moreno
,
H.
,
Cárdenas
,
P. F.
, and
Garcia
,
C.
,
2013
, “
Design and Kinematic Analysis of 3pss-1s Wrist for Needle Insertion Guidance
,”
Rob. Auton. Syst.
,
61
(
5
), pp.
417
427
.
17.
Li
,
Q.
,
Marie Hervé
,
J.
, and
Huang
,
P.
,
2017
, “
Type Synthesis of a Special Family of Remote Center-of-Motion Parallel Manipulators with Fixed Linear Actuators for Minimally Invasive Surgery
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031012
.
18.
Li
,
T.
, and
Payandeh
,
S.
,
2002
, “
Design of Spherical Parallel Mechanisms for Application to Laparoscopic Surgery
,”
Robotica
,
20
(
2
), pp.
133
138
.
19.
Pisla
,
D.
,
Gherman
,
B.
,
Vaida
,
C.
,
Suciu
,
M.
, and
Plitea
,
N.
,
2013
, “
An Active Hybrid Parallel Robot for Minimally Invasive Surgery
,”
Rob. Comp. Integr. Manuf.
,
29
(
4
), pp.
203
221
.
20.
Essomba
,
T.
,
Nouaille
,
L.
,
Laribi
,
M. A.
,
Nelson
,
C. A.
, and
Poisson
,
S. Z. G.
,
2013
, “
Spherical Wrist Dimensional Synthesis Adapted for Tool-Guidance Medical Robots
,”
Mech. Ind.
,
15
(
3
), pp.
217
223
.
21.
Bai
,
S.
,
2010
, “
Optimum Design of Spherical Parallel Manipulators for a Prescribed Workspace
,”
Mech. Mach. Theory
,
45
(
2
), pp.
200
211
.
22.
Enferadi
,
J.
, and
Tootoonchi
,
A. A.
,
2011
, “
Accuracy and Stiffness Analysis of a 3-Rrp Spherical Parallel Manipulator
,”
Robotica
,
29
(
2
), pp.
193
209
.
23.
Yair
,
A.
, and
Kiper
,
G.
,
2017
, “
Structural Synthesis of 2r1t Type Mechanisms for Minimally Invasive Surgery Applications
,”
Proceedings of the 4th Conference on Mechanisms, Transmissions and Applications (MeTrApp)
,
July 3–5, 2017
,
Springer
,
Netherlands
, pp.
31
38
.
24.
Li
,
J.
,
Zhang
,
G.
,
Müller
,
A.
, and
Wang
,
S.
,
2013
, “
A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091009
.
25.
Essomba
,
T.
, and
Nguyen Vu
,
L.
,
2018
, “
Kinematic Analysis of a New Five-Bar Spherical Decoupled Mechanism with Two-Degrees of Freedom Remote Center of Motion
,”
Mech. Mach. Theory
,
119
(
Supplement C
), pp.
184
197
.
26.
Bonev
,
I. A.
, and
Ryu
,
J.
,
2001
, “
New Approach to Orientation Workspace Analysis of 6-Dof Parallel Manipulators
,”
Mech. Mach. Theory
,
36
(
1
), pp.
15
28
.
27.
Huang
,
Z.
,
Li
,
Q.
, and
Ding
,
H.
,
2013
,
Theory of Parallel Mechanisms
,
Springer
,
Dordrecht
.
28.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Auto.
,
6
(
3
), pp.
281
290
.
29.
Fang
,
Y.
, and
Tsai
,
L. W.
,
2002
, “
Structure Synthesis of a Class of 4-Dof and 5-Dof Parallel Manipulators with Identical Limb Structures
,”
Int. J. Rob. Res.
,
21
(
9
), pp.
799
810
.
30.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
, pp.
496
502
.
31.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford
.
You do not currently have access to this content.