Abstract

Most passive gravity balancing mechanisms (GBMs) require manual adjustment or actuators to alter its parameters for different payloads. The few balancers that passively self-regulate employ regulation at the end-effector, which makes the end-effector bulky. Additionally, there is a lack of systematic approach to design such compensators. Hence, this paper provides a review of current work which serves as the basis for a systematic design approach to solve the problem. Unlike previous designs, an independent self-regulating mechanism is mounted onto the proximal link of the GBM achieving better safety, larger range of motion, and loading at intermediate angles. The GBM is designed using design tools like functional modeling and morphological analysis with existing literature. This approach reveals design considerations of current GBMs and areas for innovation. Design approaches from the literature are organized and serve as a reference for innovation. A prototype is developed, and experiments are performed to illustrate the capability.

References

References
1.
French
,
M. J.
, and
Widden
,
M. B.
,
2000
, “
The Spring-and-Lever Balancing Mechanism, George Carwardine and the Anglepoise Lamp
,”
J. Mech. Eng. Sci.
,
214
(
3
), pp.
501
508
. 10.1243/0954406001523137
2.
Lee
,
H.
,
Kim
,
W.
,
Han
,
J.
, and
Han
,
C.
,
2012
, “
The Technical Trend of the Exoskeleton Robot System for Human Power Assistance
,”
Int. J. Precis. Eng. Manuf.
,
13
(
8
), pp.
1491
1497
. 10.1007/s12541-012-0197-x
3.
Johnson
,
G. R.
,
Carus
,
D. A.
,
Parrini
,
G.
,
Marchese
,
S.
, and
Valeggi
,
R.
,
2001
, “
The Design of a Five-Degree-of-Freedom Powered Orthosis for the Upper Limb
,”
J. Eng. Med.
,
215
(
3
), pp.
275
284
. 10.1243/0954411011535867
4.
Aguirre-Ollinger
,
G.
,
Colgate
,
J. E.
,
Peshkin
,
M. A.
, and
Goswami
,
A.
,
2012
, “
Inertia Compensation Control of a One-Degree-of-Freedom Exoskeleton for Lower-Limb Assistance: Initial Experiments
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
20
(
1
), pp.
68
77
. 10.1109/TNSRE.2011.2176960
5.
Rahman
,
M.
,
Saad
,
M.
,
Jean-Pierre
,
K.
,
Archambault
,
P.
, and
Kittel-Ouimet
,
T.
,
2012
, “
Development of a 4DOFs Exoskeleton Robot for Passive Arm Movement Assistance
,”
Int. J. Mechatron. Autom.
,
2
(
1
), pp.
34
50
. 10.1504/IJMA.2012.046587
6.
Lian
,
B.
,
Sun
,
T.
,
Song
,
Y.
, and
Wang
,
X.
,
2016
, “
Passive and Active Gravity Compensation of Horizontally-Mounted 3-RPS Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
104
, pp.
190
201
. 10.1016/j.mechmachtheory.2016.05.021
7.
Janssen
,
J.
,
Paulides
,
J.
, and
Lomonova
,
E.
,
2009
, “
Passive Limitations for a Magnetic Gravity Compensator
,”
J. Syst. Des. Dyn.
,
3
(
4
), pp.
671
680
. 10.1299/jsdd.3.671
8.
Klauer
,
C.
,
Schauer
,
T.
,
Reichenfelser
,
W.
,
Karner
,
J.
,
Zwicker
,
S.
,
Gandolla
,
M.
,
Ambrosini
,
E.
,
Ferrante
,
S.
,
Hack
,
M.
,
Jedlitschka
,
A.
,
Duschau-Wicke
,
A.
,
Gfoehler
,
M.
, and
Pedrocchi
,
A.
,
2014
, “
Feedback Control of Arm Movements Using Neuro-Muscular Electrical Stimulation (NMES) Combined With a Lockable, Passive Exoskeleton for Gravity Compensation
,”
Front. Neurosci.
,
8
, pp.
1
16
. 10.3389/fnins.2014.00262
9.
Herder
,
J. L.
,
2005
, “
Development of a Statically Balanced Arm Support: ARMON
,”
IEEE International Conference on Rehabilitation Robotics
,
Chicago, IL
,
June
, pp.
281
286
. 10.1109/icorr.2005.1501102
10.
Mastenbroek
,
B.
,
de Haan
,
E.
,
van den Berg
,
M.
, and
Herder
,
J. L.
,
2007
, “
Development of a Mobile Arm Support (ARMON): Design Evolution and Preliminary User Experience
,”
IEEE International Conference on Rehabilitation Robotics
,
Noordwijk, Netherlands
,
June
, pp.
1114
1120
. 10.1109/icorr.2007.4428563
11.
Lucieer
,
P.
, and
Herder
,
J. L.
,
2005
, “
Design of an Adjustable Compensation Mechanism for Use in a Passive Arm Support
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept.
, pp.
491
500
. 10.1115/detc2005-85442
12.
Takesue
,
N.
,
Komoda
,
Y.
,
Murayama
,
H.
,
Fujiwara
,
K.
, and
Fujimoto
,
H.
,
2016
, “
Scissor Lift With Real-Time Self-Adjustment Ability Based on Variable Gravity Compensation Mechanism
,”
Adv. Rob.
,
30
(
15
), pp.
1014
1026
. 10.1080/01691864.2016.1181008
13.
Cannella
,
G.
,
Laila
,
D. S.
, and
Freeman
,
C. T.
,
2016
, “
Mechanical Design of an Affordable Adaptive Gravity Balanced Orthosis for Upper Limb Stroke Rehabilitation
,”
Mech. Des. Struct. Mach.
,
44
(
1–2
), pp.
96
108
. 10.1080/15397734.2015.1054513
14.
Gopalswamy
,
A.
,
Gupta
,
P.
, and
Vidyasagar
,
M.
,
1992
, “
Passive Mechanical Gravity Compensation for Robot Manipulators
,”
IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
Apr.
, pp.
664
669
.
15.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
J. Res. Eng. Des.
,
13
(
2
), pp.
65
82
. 10.1007/s00163-001-0008-3
16.
Stone
,
R. B.
, and
Wood
,
K. L.
,
1999
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
. 10.1115/1.1289637
17.
Kurfman
,
M. A.
,
Stock
,
M. E.
,
Stone
,
R. B.
,
Rajan
,
J.
, and
Wood
,
K. L.
,
2003
, “
Experimental Studies Assessing the Repeatability of a Functional Modeling Derivation Method
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
682
693
. 10.1115/1.1625400
18.
Rahman
,
T.
,
Sample
,
W.
,
Seliktar
,
R.
,
Alexander
,
M.
, and
Scavina
,
M.
,
2000
, “
A Body-Powered Functional Upper Limb Orthosis
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
675
680
.
19.
Rahman
,
T.
,
Ramanathan
,
R.
,
Seliktar
,
R.
, and
Harwin
,
W.
,
1995
, “
A Body-Powered Functional Upper Limb Orthosis
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
655
658
. 10.1115/1.2826738
20.
Wisse
,
B. M.
,
van Dorsser
,
W. D.
,
Barents
,
R.
, and
Herder
,
J. L.
,
2007
, “
Energy-Free Adjustment of Gravity Equilibrators Using the Virtual Spring Concept
,”
IEEE International Conference on Rehabilitation Robotics
,
Noordwijk, Netherlands
,
June
, pp.
742
750
.
21.
Dorsser
,
W. D. V.
,
Barents
,
R.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2007
, “
Gravity-Balanced Arm Support With Energy-Free Adjustment
,”
ASME J. Med. Devices
,
1
(
2
), pp.
151
158
. 10.1115/1.2736400
22.
Dorsser
,
W. D. V.
,
Barents
,
R.
,
Wisse
,
B. M.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2008
, “
Energy-Free Adjustment of Gravity Equilibrators by Adjusting the Spring Stiffness
,”
J. Mech. Eng. Sci.
,
222
(
9
), pp.
1839
1846
. 10.1243/09544062JMES832
23.
Takesue
,
N.
,
Ikematsu
,
T.
,
Murayama
,
H.
, and
Fujimoto
,
H.
,
2011
, “
Design and Prototype of Variable Gravity Compensation Mechanism (VGCM)
,”
J. Rob. Mechatron.
,
23
(
2
), pp.
249
257
. 10.20965/jrm.2011.p0249
24.
Barents
,
R.
,
Schenk
,
M.
,
van Dorsser
,
W. D.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2011
, “
Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061010
. 10.1115/1.4004101
25.
Yang
,
Z.-W.
, and
Lan
,
C.-C.
,
2015
, “
An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs
,”
Mech. Mach. Theory
,
92
, pp.
314
329
. 10.1016/j.mechmachtheory.2015.05.006
26.
Altenburger
,
R.
,
Scherly
,
D.
, and
Stadler
,
K. S.
,
2016
, “
Design of a Passive, Iso-Elastic Upper Limb Exoskeleton for Gravity Compensation
,”
ROBOMECH J.
,
3
(
12
), pp.
1
7
. 10.1186/s40648-016-0051-5
27.
Ulrich
,
N.
, and
Kumar
,
V.
,
1991
, “
Passive Mechanical Gravity Compensation for Robot Manipulators
,”
IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
April
, pp.
1536
1541
. 10.1109/robot.1991.131834
28.
Cheng
,
Z.
,
Foong
,
S.
,
Sun
,
D.
, and
Tan
,
U. X.
,
2015
, “
Towards a Multi-DOF Passive Balancing Mechanism for Upper Limbs
,”
IEEE International Conference on Rehabilitation Robotics
,
Singapore
,
Aug.
, pp.
508
513
. 10.1109/icorr.2015.7281250
29.
Nathan
,
R. H.
,
1985
, “
A Constant Force Generation Mechanism
,”
J. Mech. Trans. Autom. Des.
,
107
(
4
), pp.
508
512
. 10.1115/1.3260755
30.
Chu
,
Y.-L.
, and
Kuo
,
C.-H.
,
2017
, “
A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for Adjustable Payload
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021006
. 10.1115/1.4035561
31.
Nakayama
,
T.
,
Asahi
,
T.
, and
Fujimoto
,
H.
,
2008
,
A New Gravity Compensation System Composed of Passive Mechanical Elements for Safe Wearable Rehabilitation System
,
World Scientific Publishing
,
Singapore
, pp.
1019
1026
.
32.
Cheng
,
Z.
,
Foong
,
S.
,
Sun
,
D.
, and
Tan
,
U. X.
,
2014
, “
Algorithm for Design of Compliant Mechanism for Torsional Applications
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Besacon, France
,
July
, pp.
628
633
. 10.1109/aim.2014.6878149
33.
Otto
,
K.
, and
Wood
,
K.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
(Chap. 10—Morphological Analysis).
34.
Dinh
,
B. K.
,
Xiloyannis
,
M.
,
Antuvan
,
C. W.
,
Cappello
,
L.
, and
Masia
,
L.
,
2017
, “
Hierarchical Cascade Controller for Assistance Modulation in a Soft Wearable Arm Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1786
1793
. 10.1109/LRA.2017.2668473
You do not currently have access to this content.