Ocean wave power is a promising renewable energy source. It has, however, been difficult to find a cost-effective solution to convert wave energy into electricity. The harsh marine environment and the fact that wave power is delivered with large forces at low speed make design of durable mechanical structures and efficient energy conversion challenging. The dimensioning forces strongly depend on the wave power concept, the wave energy converter (WEC) implementation, and the actual power take-off (PTO) system. A WEC with a winch as a power take-off system, i.e., a winch-based point absorber (WBPA), could potentially enable a low levelized cost of energy (LCOE) if a low-cost, durable and efficient winch that can deal with peak loads can be developed. A key challenge for realizing such a winch is to find a force transmitting solution that can deal with these peak loads and that can handle up to 80 million cycles during its life. In this article, we propose a design solution for a force transmitting chain with elastomer bearings connecting the links of the chain. With this solution no sliding is present, and the angular motion is realized as elastic shear deformations in the elastomer bearings when the chain is wound onto the winch drum. The elastomer bearings were designed for low shear stiffness and high compression stiffness, and the links were designed primarily to minimize the number of joints in the chain. Thereby, the maximum allowed relative angle between the links when rolled up over the drum should be as large as possible within practical limits. Finite element-based topological optimization was performed with the aim to increase the link strength to weight ratio. A test rig for a first proof of concept testing has been developed, and preliminary test results indicate that this chain concept with elastomer bearings can be a potential solution for a durable chain and should be analyzed and tested further for fatigue and sea operations.

References

References
1.
Stock-Williams
,
K. G. a. C.
,
2012
, “
Quantifying the Global Wave Power Resource
,”
Renew. Energy
,
44
(
C
), pp.
296
304
.
2.
Falcao
,
A. D. O.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renew. Sustain. Energy Rev.
,
14
(
3
), pp.
899
918
.
3.
Budar
,
K.
, and
Falnes
,
J.
,
1975
, “
A Resonant Point Absorber of Ocean-Wave Power
,”
Nature
,
256
, pp.
478
479
.
4.
Leijon
,
M.
,
Bernhoff
,
H.
,
Ågren
,
O.
,
Isberg
,
J.
,
Sundberg
,
J.
,
Berg
,
M.
,
Karlsson
,
K.-E.
, and
Wolfbrendt
,
A.
,
2005
, “
Multiphysics Simulation of Wave Energy to Electric Energy Conversion by Permanent Magnet Linear Generator
,”
IEEE Trans. Energy Convers.
,
20
(
1
), pp.
219
224
.
5.
Polinder
,
H.
,
Damen
,
M. E. C.
, and
Gardner
,
F.
,
2004
, “
Linear PM Generator System for Wave Energy Conversion in the AWS
,”
IEEE Trans. Energy Convers.
,
19
(
3
), pp.
583
589
.
6.
Prudell
,
J.
,
Stoddard
,
M.
,
Amon
,
E.
,
Brekken
,
T. K. A.
, and
Jouanne
,
A. v.
,
2010
, “
A Permanent-Magnet Tubular Linear Generator for Ocean Wave Energy Conversion
,”
IEEE Trans. Ind. Appl.
,
46
(
6
), pp.
2392
2400
.
7.
Ulvgård
,
L.
,
Sjökvist
,
L.
,
Göteman
,
M.
, and
Leijon
,
M.
,
2016
, “
Line Force and Damping at Full and Partial Stator Overlap in a Linear Generator for Wave Power
,”
J. Mar. Sci. Eng.
,
4
(
4
), p.
81
.
8.
Falnes
,
J.
, and
Lillebekken
,
P. M.
,
2003
, “
Budal’s Latching-Controlled-Buoy Type Wave-Power Plant
,”
5th European Wave Energy Conference
,
Cork, Ireland
,
Sept. 17–20
.
9.
Falnes
,
J.
,
1997
, “
Annex Report B1: Device fundamentals/Hydrodynamics
”, an annex to the main report “Wave Energy Converters: Generic Technical Evaluation Study”, the final report for the B-study of the DG XII Joule Wave Energy Initiative. Contract Number JOU2-0003-DK.
10.
Todalshaug
,
J. H.
,
Ásgeirsson
,
G. S.
,
Hjálmarsson
,
E.
,
Maillet
,
J.
,
Möller
,
P.
,
Pires
,
P.
,
Guérinel
,
M.
, and
Lopes
,
M.
,
2016
, “
Tank Testing of an Inherently Phase-Controlled Wave Energy Converter
,”
Int. J. Mar. Energy
,
15
, pp.
68
84
.
11.
Davies
,
P.
,
Lacotte
,
N.
,
Arhant
,
M.
,
Durville
,
D.
,
Belkhabbaz
,
A.
,
François
,
M.
,
Khouri
,
F.
,
Konate
,
K.
,
Mills
,
S.
,
Philippe
,
J.-R.
,
DeFrance
,
C.
,
Smeets
,
P.
,
Sherman
,
D.
,
Newboles
,
K.
,
Ledoux
,
A.
,
Chazot
,
N.
,
Saillard
,
S.
,
Kante
,
R.
,
Cannell
,
D.
,
Chevallier
,
P.
, and
Lodeho
,
O.
,
2018
, “
Improved Bend Over Sheave Durability of HMPE Ropes for Deep Sea Handling
,”
ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain
,
June 17–22
.
12.
Hagnestål
,
A.
,
Sellgren
,
U.
, and
Andersson
,
K.
,
2017
, “
Durable Winch-Based Point Absorbers
,”
Proceedings of the 12th European Wave and Tidal Energy Conference
,
Cork, Ireland
,
Aug. 27–Sept. 1
.
13.
Straume
,
I.
,
2010
, “
Straumekraft AS: Durable and Profitable Wave Power
,”
3rd International Conference on Ocean EnergyBilbao
,
Bilbao
,
Oct. 6
.
14.
Straume
,
I.
, and
Viste
,
A.
,
2013
, “
Wave Powered Buoyance Control System for Floating Wave Power Plants
,” Purenco AS.
15.
Sidenmark
,
M.
,
Josefsson
,
A.
,
Berghuvud
,
A.
, and
Broman
,
G.
,
2009
, “
The Ocean Harvester—Modelling, Simulation and Experimental Validation
,”
Proceedings 8th European Wave and Tidal Energy Conference
,
Uppsala, Sweden
,
Sept. 7–10
.
16.
Stevenson
,
A.
,
1992
,
Natural Rubber: Biology, Cultivation and Technology
,
M. R. S. a. N. M.
Mathew
, ed.,
Elsevier
,
Amsterdam
.
17.
Gent
,
A. N.
,
2012
,
Engineering With Rubber: How to Design Rubber Components
,
Carl Hanser Verlag
,
Munich
.
18.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
19.
Rivlin
,
R. S.
,
1956
, “Chapter 10—Large Elastic Deformations,”
Rheology
,
F. R.
Eirich
, ed.,
Academic Press
,
New York/London/Orlando
, pp.
351
385
.
20.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. Lond. Ser. A
,
326
(
1567
), pp.
565
584
.
21.
Yeoh
,
O.
,
1997
, “
Hyperelastic Material Models for Finite Element Analysis of Rubber
,”
J. Nat. Rubber Res.
,
12
(
3
), pp.
142
153
.
22.
Ali
,
A.
,
Hosseini
,
M.
, and
Sahari
,
B. B.
,
2010
, “
A Review of Constitutive Models for Rubber-Like Materials
,”
Am. J. Appl. Sci.
,
3
(
1
), pp.
232
239
.
23.
Shahzad
,
M.
,
Kamran
,
A.
,
Siddiqui
,
M. Z.
, and
Farhan
,
M.
,
2015
, “
Mechanical Characterization and FE Modelling of a Hyperelastic Material
,”
Mater. Res.
,
18
(
5
), pp.
918
924
.
24.
Lingaiah
,
P.
,
Deshpande
,
G. A.
,
Wigardt Ahlin
,
O.
, and
Colazio
,
S.
,
2017
, “
Design of Durable Winch for Wave Energy Converter
,” Student Report, KTH, Machine Design, Student Project.
25.
American Association of State Highway and Transportation Officials
,
2017
, “
AASHTO LRFD Bridge Design Specification
.”
26.
Zeon_Chemicals
, “
NIPOL NBR Rubber
,” https://www.zeonchemicals.com/products/nipol-nbr/.
27.
Hagnestål
,
A.
,
2016
, “
A Low Cost and Highly Efficient TFM Generator for Wave Power
,”
The 3rd Asian Wave and Tidal Energy Conference AWTEC
,
Singapore
,
Oct. 24–28
.
28.
Hagnestål
,
A.
, and
Gulbrandzén
,
E.
,
2017
, “
A Highly Efficient and Low-Cost Linear TFM Generator for Wave Power
,”
EWTEC 2017: The 12th European Wave and Tidal Energy Conference
,
Cork, Ireland
.
29.
Hagnestål
,
A.
,
2018
, “
On the Optimal Pole Width for Direct Drive Linear Wave Power Generators Using Ferrite Magnets
,”
Energies
,
11
(
6
), p.
1356
.
30.
Sjolte
,
J.
,
Tjensvoll
,
G.
, and
Molinas
,
M.
,
2014
, “
Self-Sustained All-Electric Wave Energy Converter System
,”
Int. J. Comput. Math. Electric. Electron. Eng.
,
33
(
5
), pp.
1705
1721
.
You do not currently have access to this content.