The estimation of the statistical moments is widely involved in the industrial application, whose accuracy affects the reliability analysis result considerably. In this study, a novel hybrid dimension-reduction method based on the Nataf transformation is proposed to calculate the statistical moments of the performance function with correlated input variables. Nataf transformation is intrinsically the Gaussian copula, which is commonly used to transform the correlated input variables into independent ones. To calculate the numerical integration of the univariate component function in the proposed method, a normalized moment-based quadrature rule is employed. According to the statistical moments obtained by the proposed method, the probability density function of the performance function can be recovered accurately via maximum entropy method. Six examples are tested to illustrate the accuracy and efficiency of the proposed method, compared with that of Monte Carlo simulation, the conventional univariate dimension-reduction method, and the bivariate dimension-reduction method. It is confirmed that the proposed method achieves a good tradeoff between accuracy and efficiency for structural reliability analysis with correlated input variables.

References

References
1.
Meng
,
Z.
,
Pu
,
Y.
, and
Zhou
,
H.
,
2017
, “
Adaptive Stability Transformation Method of Chaos Control for First Order Reliability Method
,”
Eng. Comput.
,
34
(1
1
) pp.
1
13
.
2.
Dai
,
H.
,
Zhang
,
H.
, and
Wang
,
W.
,
2016
, “
A New Maximum Entropy-Based Importance Sampling for Reliability Analysis
,”
Struct. Saf.
,
63
(
1
), pp.
71
80
.
3.
Santos
,
S. R.
,
Matioli
,
L. C.
, and
Beck
,
A. T.
,
2012
, “
New Optimization Algorithms for Structural Reliability
,”
Comput. Model. Eng. Sci.
,
83
(
1
), pp.
23
55
.
4.
Li
,
G.
,
Li
,
B.
, and
Hu
,
H.
,
2017
, “
A Novel First–Order Reliability Method Based on Performance Measure Approach for Highly Nonlinear Problems
,”
Struct. Multidisc. Optim.
,
57
(
4
), pp.
1593
1610
.
5.
Ghosn
,
M.
,
Frangopol
,
D. M.
,
Mcallister
,
T. P.
,
Shah
,
M.
,
Diniz
,
S. M. C.
,
Ellingwood
,
B. R.
,
Manuel
,
L.
,
Biondini
,
F.
,
Catbas
,
N.
,
Strauss
,
A.
, and
Zhao
,
X. L.
,
2016
, “
Reliability-Based Performance Indicators for Structural Members
,”
J. Struct. Eng.
,
142
(
9
), p.
F4016002
.
6.
Meng
,
Z.
,
Hu
,
H.
, and
Zhou
,
H.
,
2018
, “
Super Parametric Convex Model and Its Application for Non-Probabilistic Reliability-Based Design Optimization
,”
Appl. Math. Model
,
55
(
1
), pp.
354
370
.
7.
Meng
,
Z.
, and
Zhou
,
H.
,
2018
, “
New Target Performance Approach for a Super Parametric Convex Model of Non-Probabilistic Reliability-Based Design Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
399
(
1
), pp.
644
662
.
8.
Meng
,
Z.
,
Yang
,
D.
,
Zhou
,
H.
, and
Wang
,
B.
,
2018
, “
Convergence Control of Single Loop Approach for Reliability-Based Design Optimization
,”
Struct. Multidisc. Optim.
,
57
(
3
), pp.
1079
1091
.
9.
Meng
,
Z.
, and
Keshtegar
,
B.
,
2019
, “
Adaptive Conjugate Single-Loop Method for Efficient Reliability-Based Design and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
344
(
1
), pp.
95
119
.
10.
Zhao
,
Y. G.
, and
Ono
,
T.
,
2001
, “
Moment Methods for Structural Reliability
,”
Struct. Saf.
,
23
(
1
), pp.
47
75
.
11.
Du
,
X.
,
2010
, “
System Reliability Analysis With Saddlepoint Approximation
,”
Struct. Multidisc. Optim.
,
42
(
2
), pp.
193
208
.
12.
Acar
,
E.
,
Rais-Rohani
,
M.
, and
Eamon
,
C. D.
,
2010
, “
Reliability Estimation Using Univariate Dimension Reduction and Extended Generalised Lambda Distribution
,”
Int. J. Reliab. Saf.
,
4
(
2–3
), pp.
166
187
.
13.
Li
,
G.
, and
Zhang
,
K.
,
2011
, “
A Combined Reliability Analysis Approach With Dimension Reduction Method and Maximum Entropy Method
,”
Struct. Multidisc. Optim.
,
43
(
1
), pp.
121
134
.
14.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
,
2008
, “
Eigenvector Dimension Reduction (EDR) Method for Sensitivity-Free Probability Analysis
,”
Struct. Multidisc. Optim.
,
37
(
1
), pp.
13
28
.
15.
Johnson
,
N.
,
Kotz
,
S.
, and
Balakrishnan
,
N.
,
1995
,
Continuous Univariate Distributions
,
Wiley-Interscience
,
New York
.
16.
Huang
,
B.
, and
Du
,
X.
,
2006
, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations
,”
J. Mech. Design
,
128
(
1
), pp.
26
33
.
17.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
108
(
2
), pp.
171
190
.
18.
Gzyl
,
H.
, and
Tagliani
,
A.
,
2010
, “
Hausdorff Moment Problem and Fractional Moments
,”
Appl. Math. Comput.
,
216
(
11
), pp.
3319
3328
.
19.
Shore
,
J.
, and
Johnson
,
R.
,
1980
, “
Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy
,”
IEEE. T. IT
,
26
(
1
), pp.
26
37
.
20.
Xu
,
H.
, and
Rahman
,
S.
,
2004
, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Meth. Eng.
,
61
(
12
), pp.
1992
2019
.
21.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
22.
Li
,
D.
,
Chen
,
Y.
,
Lu
,
W.
, and
Zhou
,
C.
,
2011
, “
Stochastic Response Surface Method for Reliability Analysis of Rock Slopes Involving Correlated Non-Normal Variables
,”
Comput. Geotech.
,
38
(
1
), pp.
58
68
.
23.
Lee
,
I.
,
Choi
,
K. K.
,
Noh
,
Y.
,
Zhao
,
L.
, and
Gorsich
,
D.
,
2011
, “
Sampling-Based Stochastic Sensitivity Analysis Using Score Functions for RBDO Problems With Correlated Random Variables
,”
J. Mech. Design
,
133
(
2
), p.
021003
.
24.
Lee
,
I.
,
Choi
,
K. K.
,
Noh
,
Y.
, and
Lamb
,
D.
,
2012
, “
Comparison Study Between Probabilistic and Possibilistic Methods for Problems Under a Lack of Correlated Input Statistical Information
,”
Struct. Multidisc. Optim.
,
47
(
2
), pp.
175
189
.
25.
Rackwitz
,
R.
, and
Flessler
,
B.
,
1987
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comp. Struct.
,
9
(
5
), pp.
489
494
.
26.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
27.
Piric
,
K.
,
2015
, “
Reliability Analysis Method Based on Determination of the Performance Function’s PDF Using the Univariate Dimension Reduction Method
,”
Struct. Saf.
,
57
(
1
), pp.
18
25
.
28.
Lebrun
,
R.
, and
Dutfoy
,
A.
,
2009
, “
A Generalization of the Nataf Transformation to Distributions With Elliptical Copula
,”
Probab. Eng. Mech.
,
24
(
2
), pp.
172
178
.
29.
Lebrun
,
R.
, and
Dutfoy
,
A.
,
2009
, “
An Innovating Analysis of the Nataf Transformation From the Copula Viewpoint
,”
Probab. Eng. Mech.
,
24
(
3
), pp.
312
320
.
30.
Lebrun
,
R.
, and
Dutfoy
,
A.
,
2009
, “
Do Rosenblatt and Nataf Isoprobabilistic Transformations Really Differ?
,”
Probab. Eng. Mech.
,
24
(
4
), pp.
577
584
.
31.
Karanki
,
D. R.
,
Jadhav
,
P. A.
,
Chandrakar
,
A.
,
Srividya
,
A.
, and
Verma
,
A. K.
,
2010
, “
Uncertainty Analysis in PSA With Correlated Input Parameters
,”
Int. J. Syst. Assur. Eng. Manag.
,
1
(
1
), pp.
66
71
.
32.
Noh
,
Y.
,
Choi
,
K. K.
, and
Du
,
L.
,
2008
, “
Reliability-Based Design Optimization of Problems With Correlated Input Variables Using a Gaussian Copula
,”
Struct. Multidisc. Optim.
,
38
(
1
), pp.
1
16
.
33.
Mnatsakanov
,
R. M.
,
2008
, “
Hausdorff Moment Problem: Reconstruction of Probability Density Functions
,”
Stat. Probabil. Lett.
,
78
(
13
), pp.
1869
1877
.
34.
Gzyl
,
H.
, and
Tagliani
,
A.
,
2010
, “
Stieltjes Moment Problem and Fractional Moments
,”
Appl. Math. Comput.
,
216
(
11
), pp.
3307
3318
.
35.
Mead
,
L. R.
, and
Papanicolaou
,
N.
,
1984
, “
Maximum Entropy in the Problem of Moments
,”
J. Math. Phys.
,
25
(
8
), pp.
2404
2417
.
36.
Zhang
,
X.
, and
Pandey
,
M. D.
,
2013
, “
Structural Reliability Analysis Based on the Concepts of Entropy, Fractional Moment and Dimensional Reduction Method
,”
Struct. Saf.
,
43
(
1
), pp.
28
40
.
37.
Nelsen
,
R. B.
,
2006
,
An Introduction to Copulas
,
Springer
,
New York
.
38.
Goda
,
K.
, and
Tesfamariam
,
S.
,
2015
, “
Multi-Variate Seismic Demand Modelling Using Copulas: Application to Non-Ductile Reinforced Concrete Frame in Victoria, Canada
,”
Struct. Saf.
,
56
(
1
), pp.
39
51
.
39.
Tang
,
X. S.
,
Li
,
D. Q.
,
Zhou
,
C. B.
, and
Phoon
,
K. K.
,
2015
, “
Copula-Based Approaches for Evaluating Slope Reliability Under Incomplete Probability Information
,”
Struct. Saf.
,
52
(
1
), pp.
90
99
.
40.
Yang
,
R. J.
, and
Gu
,
L.
,
2004
, “
Experience With Approximate Reliability-Based Optimization Methods
,”
Struct. Multidisc. Optim.
,
26
(
1–2
), pp.
152
159
.
41.
Gu
,
L.
,
Yang
,
R. J.
,
Cho
,
C. H.
,
Makowski
,
M.
,
Faruque
,
M.
, and
Li
,
Y.
,
2001
, “
Optimisation and Robustness for Crashworthiness of Side Impact
,”
Int. J. Vehicle. Des.
,
26
(
4
), pp.
348
360
.
42.
Keshtegar
,
B.
, and
Hao
,
P.
,
2018
, “
A Hybrid Descent Mean Value for Accurate and Efficient Performance Measure Approach of Reliability-Based Design Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
336
(
1
), pp.
237
259
.
43.
Hao
,
P.
,
Wang
,
Y. T.
,
Liu
,
C.
,
Wang
,
B.
,
Tian
,
K.
,
Li
,
G.
,
Wang
,
Q.
, and
Jiang
,
L. L.
,
2018
, “
Hierarchical Nondeterministic Optimization of Curvilinearly Stiffened Panel With Multicutouts
,”
AIAA J.
,
56
(
10
), pp.
4180
4194
.
44.
Li
,
G.
,
Zhou
,
C. X.
,
Zeng
,
Y.
,
He
,
W. X.
,
Li
,
H. R.
, and
Wang
,
R. Q.
,
2019
, “
New Maximum Entropy-Based Algorithm for Structural Design Optimization
,”
Appl. Math. Model.
,
66
(
1
), pp.
26
40
.
45.
McNeil
,
A. J.
,
Frey
,
R.
, and
Embrechts
,
P.
,
2005
,
Quantitative Risk Management: Concepts, Techniques and Tools
,
Princeton University Press
,
Princeton
.
You do not currently have access to this content.