Bayesian optimal design of experiments (BODEs) have been successful in acquiring information about a quantity of interest (QoI) which depends on a black-box function. BODE is characterized by sequentially querying the function at specific designs selected by an infill-sampling criterion. However, most current BODE methods operate in specific contexts like optimization, or learning a universal representation of the black-box function. The objective of this paper is to design a BODE for estimating the statistical expectation of a physical response surface. This QoI is omnipresent in uncertainty propagation and design under uncertainty problems. Our hypothesis is that an optimal BODE should be maximizing the expected information gain in the QoI. We represent the information gain from a hypothetical experiment as the Kullback–Liebler (KL) divergence between the prior and the posterior probability distributions of the QoI. The prior distribution of the QoI is conditioned on the observed data, and the posterior distribution of the QoI is conditioned on the observed data and a hypothetical experiment. The main contribution of this paper is the derivation of a semi-analytic mathematical formula for the expected information gain about the statistical expectation of a physical response. The developed BODE is validated on synthetic functions with varying number of input-dimensions. We demonstrate the performance of the methodology on a steel wire manufacturing problem.

References

References
1.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
2.
Flournoy
,
N.
,
1993
,
Bayesian Statistics in Science and Technology: Case Studies
,
C.
Gatsonis
,
J.
Hodges
,
R. E.
Kass
, and
N.
Singpurwalla
, eds.,
Springer
,
New York
, pp.
324
336
.
3.
Eriksson
,
L.
,
Johansson
,
E.
,
Kettaneh-Wold
,
N.
,
Wikström
,
C.
, and
Wold
,
S.
,
2000
,
Principles and Applications
,
Learn Ways AB
,
Stockholm
.
4.
Anderson
,
M. J.
, and
Whitcomb
,
P. J.
,
2000
,
Design of Experiments
,
Wiley Online Library
,
New York
.
5.
Alexanderian
,
A.
,
Petra
,
N.
,
Stadler
,
G.
, and
Ghattas
,
O.
,
2014
, “
A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems With Regularized L0 Sparsification
,”
SIAM J. Sci. Comput.
,
36
(
5
), pp.
A2122
A2148
.
6.
Montgomery
,
D. C.
,
2017
,
Design and Analysis of Experiments
,
John Wiley & Sons
,
New York
.
7.
Chaloner
,
K.
, and
Verdinelli
,
I.
,
1995
, “
Bayesian Experimental Design: A Review
,”
Stat. Sci.
,
10
(
3
), pp.
273
304
.
8.
Chernoff
,
H.
,
1959
, “
Sequential Design of Experiments
,”
Ann. Math. Stat.
,
30
(
3
), pp.
755
770
.
9.
Robbins
,
H.
,
1952
, “
Some Aspects of the Sequential Design of Experiments
,”
Bulletin of the American Mathematical Society
,
58
(
5
), pp.
527
535
.
10.
Havinga
,
J.
,
Klaseboer
,
G.
, and
Van den Boogaard
,
A.
,
2013
,
Key Engineering Materials:The Current State-of-the-Art on Material Forming
,
R.
Alves de Sousa
and
R.
Valente
, eds.,
softcover
, Vol.
554
,
Trans Tech Publications
,
Aveiro, Portugal
, pp.
911
918
.
11.
Havinga
,
J.
,
van den Boogaard
,
A. H.
, and
Klaseboer
,
G.
,
2017
, “
Sequential Improvement for Robust Optimization Using an Uncertainty Measure for Radial Basis Functions
,”
Struct. Multidiscipl. Optim.
,
55
(
4
), pp.
1345
1363
.
12.
Alrefae
,
M. A.
,
2018
, “
Process Characterization and Optimization of Roll-to-Roll Plasma Chemical Vapor Deposition for Graphene Growth
,” Ph.D. thesis,
Purdue University
,
West Lafayette, IN
.
13.
Saviers
,
K. R.
,
2017
, “
Scaled-Up Production and Transport Applications of Graphitic Carbon Nanomaterials
,” Ph.D. thesis,
Purdue University
,
West Lafayette, IN
.
14.
Schonlau
,
M.
,
1997
, “
Computer Experiments and Global Optimization
,” Ph.D. thesis,
University of Waterloo
,
Ontario, Canada
.
15.
Simpson
,
T. W.
,
Lin
,
D. K.
, and
Chen
,
W.
,
2001
, “
Sampling Strategies for Computer Experiments: Design and Analysis
,”
Int. J. Reliab. Appl.
,
2
(
3
), pp.
209
240
.
16.
Gramacy
,
R. B.
, and
Ludkovski
,
M.
,
2015
, “
Sequential Design for Optimal Stopping Problems
,”
SIAM J. Financ. Math.
,
6
(
1
), pp.
748
775
.
17.
Huan
,
X.
,
2010
, “
Accelerated Bayesian Experimental Design for Chemical Kinetic Models
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
18.
Locatelli
,
M.
,
1997
, “
Bayesian Algorithms for One-Dimensional Global Optimization
,”
J. Global Optim.
,
10
(
1
), pp.
57
76
.
19.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
20.
Gaul
,
N. J.
,
2014
,
Modified Bayesian Kriging for Noisy Response Problems and Bayesian Confidence-Based Reliability-Based Design Optimization
,
The University of Iowa
,
Iowa City, IA
.
21.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Zeng
,
N.
,
2006
, “
Global Optimization of Stochastic Black-Box Systems Via Sequential Kriging Meta-Models
,”
J. Global Optim.
,
34
(
3
), pp.
441
466
.
22.
Lizotte
,
D.
,
2008
, Ph.D. thesis,
University of Alberta
,
Edmonton, Alberta, Canada
.
23.
Frazier
,
P. I.
,
Powell
,
W. B.
, and
Dayanik
,
S.
,
2008
, “
A Knowledge-Gradient Policy for Sequential Information Collection
,”
SIAM J. Control Optim.
,
47
(
5
), pp.
2410
2439
.
24.
Mockus
,
J.
,
2012
,
Bayesian Approach to Global Optimization: Theory and Applications
, Vol.
37
,
Springer Science & Business Media
,
New York
.
25.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2013
, “
Objective-Oriented Sequential Sampling for Simulation Based Robust Design Considering Multiple Sources of Uncertainty
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051005
.
26.
Huan
,
X.
, and
Marzouk
,
Y.
,
2014
, “
Gradient-Based Stochastic Optimization Methods in Bayesian Experimental Design
,”
Int. J. Uncertain. Quantif.
,
4
(
6
), pp.
479
510
.
27.
Lam
,
R.
,
Willcox
,
K.
, and
Wolpert
,
D. H.
,
2016
,
Advances in Neural Information Processing Systems
,
Curran Associates Inc.
, pp.
883
891
.
28.
Marco
,
A.
,
Hennig
,
P.
,
Bohg
,
J.
,
Schaal
,
S.
, and
Trimpe
,
S.
,
2016
, “
Automatic lqr Tuning Based on Gaussian Process Global Optimization
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
, IEEE, pp.
270
277
.
29.
Kristensen
,
J.
,
Bilionis
,
I.
, and
Zabaras
,
N.
,
2017
, “Adaptive Simulation Selection for the Discovery of the Ground State Line of Binary Alloys With a Limited Computational Budget,”
Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science
,
Springer
,
New York
, pp.
185
211
.
30.
Christen
,
J. A.
, and
Sansó
,
B.
,
2011
, “
Advances in the Sequential Design of Computer Experiments Based on Active Learning
,”
Commun. Stat. Theory Methods
,
40
(
24
), pp.
4467
4483
.
31.
MacKay
,
D. J.
,
1992
, “
Information-Based Objective Functions for Active Data Selection
,”
Neural Comput.
,
4
(
4
), pp.
590
604
.
32.
Krause
,
A.
,
Singh
,
A.
, and
Guestrin
,
C.
,
2008
, “
Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies
,”
J. Mach. Learn. Res.
,
9
(
Feb
), pp.
235
284
.
33.
Stroh
,
R.
,
Demeyer
,
S.
,
Fischer
,
N.
,
Bect
,
J.
, and
Vazquez
,
E.
,
2017
, “
Sequential Design of Experiments to Estimate a Probability of Exceeding a Threshold in a Multi-Fidelity Stochastic Simulator
,”
61th World Statistics Congress of the International Statistical Institute (ISI 2017)
,
Marrakech, Morocco
,
July 16–21
.
34.
Beck
,
J.
, and
Guillas
,
S.
,
2016
, “
Sequential Design With Mutual Information for Computer Experiments (Mice): Emulation of a Tsunami Model
,”
SIAM/ASA J. Uncertain. Quantif.
,
4
(
1
), pp.
739
766
.
35.
Gramacy
,
R. B.
, and
Lee
,
H. K.
,
2009
, “
Adaptive Design and Analysis of Supercomputer Experiments
,”
Technometrics
,
51
(
2
), pp.
130
145
.
36.
Terejanu
,
G.
,
Upadhyay
,
R. R.
, and
Miki
,
K.
,
2012
, “
Bayesian Experimental Design for the Active Nitridation of Graphite by Atomic Nitrogen
,”
Exp. Therm. Fluid. Sci.
,
36
, pp.
178
193
.
37.
Mohamad
,
M. A.
,
2017
, “
Direct and Adaptive Quantification Schemes for Extreme Event Statistics in Complex Dynamical Systems
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
38.
Mohamad
,
M. A.
, and
Sapsis
,
T. P.
,
2018
, “
A Sequential Sampling Strategy for Extreme Event Statistics in Nonlinear Dynamical Systems
,” preprint arXiv:1804.07240.
39.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
.
40.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
41.
Tsilifis
,
P.
,
Ghanem
,
R. G.
, and
Hajali
,
P.
,
2017
, “
Efficient Bayesian Experimentation Using an Expected Information Gain Lower Bound
,”
SIAM/ASA J. Uncertain. Quantif.
,
5
(
1
), pp.
30
62
.
42.
Nath
,
P.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Sensor Placement for Calibration of Spatially Varying Model Parameters
,”
J. Comput. Phys.
,
343
, pp.
150
169
.
43.
Yan
,
L.
,
Duan
,
X.
,
Liu
,
B.
, and
Xu
,
J.
,
2018
, “
Gaussian Processes and Polynomial Chaos Expansion for Regression Problem: Linkage Via the Rkhs and Comparison Via the KL Divergence
,”
Entropy
,
20
(
3
), p.
191
.
44.
Choi
,
S.-K.
,
Grandhi
,
R. V.
,
Canfield
,
R. A.
, and
Pettit
,
C. L.
,
2004
, “
Polynomial Chaos Expansion With Latin Hypercube Sampling for Estimating Response Variability
,”
AIAA J.
,
42
(
6
), pp.
1191
1198
.
45.
Hadigol
,
M.
, and
Doostan
,
A.
,
2017
, “
Least Squares Polynomial Chaos Expansion: A Review of Sampling Strategies
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
382
407
.
46.
Terejanu
,
G.
,
Bryant
,
C.
, and
Miki
,
K.
,
2013
, “
Bayesian Optimal Experimental Design for the Shock-Tube Experiment
,”
J. Phys.: Conf. Ser.
,
410
(
1
), pp.
012040
.
47.
Hennig
,
P.
, and
Schuler
,
C. J.
,
2012
, “
Entropy Search for Information-Efficient Global Optimization
,”
J. Mach. Learn. Res.
,
13
(
Jun.
), pp.
1809
1837
.
48.
Guestrin
,
C.
,
Krause
,
A.
, and
Singh
,
A. P.
,
2005
, “
Near-Optimal Sensor Placements in Gaussian Processes
,”
Proceedings of the 22nd International Conference on Machine Learning
,
Bonn, Germany
, ACM, pp. 265–272.
49.
Huan
,
X.
, and
Marzouk
,
Y. M.
,
2013
, “
Simulation-Based Optimal Bayesian Experimental Design for Nonlinear Systems
,”
J. Comput. Phys.
,
232
(
1
), pp.
288
317
.
50.
Picheny
,
V.
,
Ginsbourger
,
D.
,
Roustant
,
O.
,
Haftka
,
R. T.
, and
Kim
,
N.-H.
,
2010
, “
Adaptive Designs of Experiments for Accurate Approximation of a Target Region
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071008
.
51.
Xiao
,
N.-C.
,
Zuo
,
M. J.
, and
Zhou
,
C.
,
2018
, “
A New Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
169
(
C
), pp.
330
338
.
52.
Liu
,
H.
,
Xu
,
S.
,
Ma
,
Y.
,
Chen
,
X.
, and
Wang
,
X.
,
2016
, “
An Adaptive Bayesian Sequential Sampling Approach for Global Metamodeling
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011404
.
53.
Liu
,
H.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2006
, “
Relative Entropy Based Method for Probabilistic Sensitivity Analysis in Engineering Design
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
326
336
.
54.
Gonzalvez
,
J.
,
Lezmi
,
E.
,
Roncalli
,
T.
, and
Xu
,
J.
,
2019
, “
Financial Applications of Gaussian Processes and Bayesian Optimization
,” preprint arXiv:1903.04841.
55.
Wu
,
J.
,
Toscano-Palmerin
,
S.
,
Frazier
,
P. I.
, and
Wilson
,
A. G.
,
2019
, “
Practical Multi-Fidelity Bayesian Optimization for Hyperparameter Tuning
,” preprint arXiv:1903.04703.
56.
OHagan
,
A.
,
2006
, “
Bayesian Analysis of Computer Code Outputs: A Tutorial
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1290
1300
.
57.
Briol
,
F.-X.
,
Oates
,
C.
,
Girolami
,
M.
, and
Osborne
,
M. A.
,
2015
, “
Frank–Wolfe Bayesian Quadrature: Probabilistic Integration With Theoretical Guarantees
,”
Advances in Neural Information Processing Systems
, pp.
1162
1170
.
58.
Oates
,
C. J.
,
Girolami
,
M.
, and
Chopin
,
N.
,
2017
, “
Control Functionals for Monte Carlo Integration
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
79
(
3
), pp.
695
718
.
59.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning
,
MIT Press
,
Cambridge, MA
.
60.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
,
Dunson
,
D. B.
,
Vehtari
,
A.
, and
Rubin
,
D. B.
,
2014
,
Bayesian Data Analysis
,
Vol. 2
,
CRC Press
,
Boca Raton, FL
.
61.
Goodman
,
J.
, and
Weare
,
J.
,
2010
, “
Ensemble Samplers With Affine Invariance
,”
Commun. Appl. Math. Comput. Sci.
,
5
(
1
), pp.
65
80
.
62.
Duchi
,
J.
,
2007
,
Derivations for Linear Algebra and Optimization
,
Stanford University
,
Berkeley, CA
.
63.
Foreman-Mackey
,
D.
,
Hogg
,
D. W.
,
Lang
,
D.
, and
Goodman
,
J.
,
2013
, “
EMCEE: The MCMC Hammer
,”
Publ. Astron. Soc. Pacific
,
125
(
925
), p.
306
.
64.
Sóbester
,
A.
,
Leary
,
S. J.
, and
Keane
,
A. J.
,
2005
, “
On the Design of Optimization Strategies Based on Global Response Surface Approximation Models
,”
J. Global Optim.
,
33
(
1
), pp.
31
59
.
65.
Dette
,
H.
, and
Pepelyshev
,
A.
,
2010
, “
Generalized Latin Hypercube Design for Computer Experiments
,”
Technometrics
,
52
(
4
), pp.
421
429
.
66.
Knowles
,
J.
,
2006
, “
Parego: A Hybrid Algorithm With On-Line Landscape Approximation for Expensive Multiobjective Optimization Problems
,”
IEEE Trans. Evol. Comput.
,
10
(
1
), pp.
50
66
.
67.
Bui-Thanh
,
T.
,
Willcox
,
K.
, and
Ghattas
,
O.
,
2008
, “
Model Reduction for Large-Scale Systems With High-Dimensional Parametric Input Space
,”
SIAM J. Sci. Comput.
,
30
(
6
), pp.
3270
3288
.
This content is only available via PDF.
You do not currently have access to this content.