Reliability-based design optimization (RBDO) aims at minimizing a function of probabilistic design variables, given a maximum allowed probability of failure. The most efficient methods available for solving moderately nonlinear problems are single loop single vector (SLSV) algorithms that use a first-order approximation of the probability of failure in order to rewrite the inherently nested structure of the loop into a more efficient single loop algorithm. The research presented in this paper takes off from the fundamental idea of this algorithm. An augmented SLSV algorithm is proposed that increases the rate of convergence by making nonlinear approximations of the constraints. The nonlinear approximations are constructed in the following way: first, the SLSV experiments are performed. The gradient of the performance function is known, as well as an estimate of the most probable failure point (MPP). Then, one extra experiment, a probe point, per performance function is conducted at the first estimate of the MPP. The gradient of each performance function is not updated but the probe point facilitates the use of a natural cubic spline as an approximation of an augmented MPP estimate. The SLSV algorithm using probing (SLSVP) also incorporates a simple and effective move limit (ML) strategy that also minimizes the heuristics needed for initiating the optimization algorithm. The size of the forward finite difference design of experiment (DOE) is scaled proportionally with the change of the ML and so is the relative position of the MPP estimate at the current iteration. Benchmark comparisons against results taken from the literature show that the SLSVP algorithm is more efficient than other established RBDO algorithms and converge in situations where the SLSV algorithm fails.

References

References
1.
Moon
,
M.-Y.
,
Choi
,
K.
,
Cho
,
H.
,
Gaul
,
N.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2017
, “
Reliability-Based Design Optimization Using Confidence-Based Model Validation for Insufficient Experimental Data
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031404
.
2.
Hasofer
,
A.
, and
Lind
,
N.
,
1974
, “
Exact and Invariant Second Moment Code Format
,”
J. Eng. Mech. Div. (ASCE)
,
100
(
1
), pp.
111
121
.
3.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
,
2005
, “
First-order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
851
857
.
4.
Valdebenito
,
M. A.
, and
Schuëller
,
G. I.
,
2010
, “
A Survey on Approaches for Reliability-based Optimization
,”
Struct. Multidiscipl. Optim.
,
42
(
5
), pp.
645
663
.
5.
Yao
,
W.
,
Chen
,
X.
,
Luo
,
W.
,
van Tooren
,
M.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Progr. Aerosp. Sci.
,
47
(
6
), pp.
450
479
.
6.
Aoues
,
Y.
, and
Chateauneuf
,
A.
,
2010
, “
Benchmark Study of Numerical Methods for Reliability-Based Design Opitmization
,”
Struct. Multidiscipl. Optim.
,
41
(
2
), pp.
277
294
.
7.
Du
,
X.
, and
Hu
,
Z.
,
2012
, “
First Order Reliability Method With Truncated Random Variables
,”
ASME J. Mech. Des.
,
134
(
9
), p.
091005
.
8.
Nikolaidis
,
E.
, and
Burdisso
,
R.
,
1988
, “
Reliability Based Optimization: a Safety Index Approach
,”
Comput. Struct.
,
28
(
6
), pp.
781
788
.
9.
Tu
,
Choi
,
1999
, “
A New Study on Reliabiloty-Based Design Optimization
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
557
564
.
10.
Jeong
,
S.-B.
, and
Park
,
G.-J.
,
2017
, “
Single Loop Single Vector Approach Using the Conjugate Gradient in Reliability Based Design Optimization
,”
Struct. Multidiscipl. Optim.
,
55
(
4
), pp.
1329
1344
.
11.
Shan
,
S.
, and
Wang
,
G. G.
,
2008
, “
Reliable Design Space and Complete Single-loop Reliability-Based Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
93
(
8
), pp.
1218
1230
.
12.
Kirjner-Neto
,
C.
,
Polak
,
E.
, and
Der Kiureghian
,
A.
,
1998
, “
An Outer Approximations Approach to Reliability-Based Optimal Design of Structures
,”
J. Optim. Theory Appl.
,
98
(
1
), pp.
1
16
.
13.
Kharmanda
,
G.
,
Mohamed
,
A.
, and
Lemaire
,
M.
,
2002
, “
Efficient Reliability-Based Design Optimization Using a Hybrid Space With Application to Finite Element Analysis
,”
Struct. Multidiscipl. Optim.
,
24
(
3
), pp.
233
245
.
14.
Chen
,
X.
, and
Hasselman
,
T.
,
1974
, “
Reliability Based Structrual Design for Practical Applications
,”
Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structrual Dynamics and Material Conference
,
Kissimmee
, AIAA-97-1403.
15.
Cheng
,
G.
,
Xu
,
L.
, and
Jiang
,
L.
,
2006
, “
A Sequential Approximate Programming Strategy for Reliability-Based Structural Optimization
,”
Comput. Struct.
,
84
(
21
), pp.
1353
1367
.
16.
Chen
,
Z.
,
Qiu
,
H.
,
Gao
,
L.
,
Li
,
X.
, and
Li
,
P.
,
2014
, “
A Local Adaptive Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscipl. Optim.
,
49
(
3
), pp.
401
416
.
17.
Zhao
,
L.
,
Choi
,
K.
, and
Lee
,
I.
,
2011
, “
Metamodeling Method Using Dynamic Kriging for Design Optimization
,”
AIAA J.
,
49
(
9
), pp.
2034
2046
.
18.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Safety
,
81
(
1
), pp.
23
69
.
19.
Du
,
X.
, and
Chen
,
W.
,
2007
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
20.
Meng
,
D.
,
Li
,
Y.-F.
,
Huang
,
H.-Z.
,
Wang
,
Z.
, and
Liu
,
Y.
,
2015
, “
Reliability-Based Multidisciplinary Design Optimization Using Subset Simulation Analysis and Its Application in the Hydraulic Transmission Mechanism Design
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051402
.
21.
Dersjö
,
T.
,
2012
, “
Methods for Reliability Based Design Optimization of Structural Components
,” PhD thesis,
Royal Institute of Technology
,
Stockholm, Sweden
.
22.
Wang
,
L.
,
Grandhi
,
R. V.
, and
Hopkins
,
D. A.
,
1995
, “
Structural Reliability Optimization Using An Efficient Safety Index Calculation Procedure
,”
Int. J. Numer. Methods Eng.
,
38
(
10
), pp.
1721
1738
.
23.
Wang
,
L.
, and
Grandhi
,
R. V.
,
1995
, “
Improved Two-point Function Approximations for Design Optimization
,”
AIAA J.
,
33
(
9
), pp.
1720
1727
.
24.
Wu
,
Y.-T.
, and
Wirsching
,
P. H.
,
1987
, “
New Algorithm for Structural Reliability Estimation
,”
J. Eng. Mech.
,
113
(
9
), pp.
1319
1336
.
25.
Wirsching
,
P.
,
Torng
,
T.
, and
Martin
,
W.
,
1991
, “
Advanced Fatigue Reliability Analysis
,”
Int. J. Fatigue
,
13
(
5
), pp.
389
394
.
26.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
2007
,
Structural Reliability Methods
, Monograph,
1st ed.
,
John Wiley & Sons Ltd.
,
Chichester
.
27.
Rackwitz
,
R.
,
2001
, “
Reliability Analysis – A Review and Some Perspectives
,”
Struct. Safety
,
23
(
4
), pp.
365
395
.
28.
Mansour
,
R.
, and
Olsson
,
M.
,
2018
, “
Efficient Reliability Assessment With the Conditional Probability Method
,”
ASME J. Mech. Des.
,
140
(
8
), p.
081402
.
29.
Madsen
,
H
, and
Lind
,
N. C.
,
1986
,
Methods of Structural Safety
(Prentice-Hall International Series in Civil Engineering and Engineering Mechanics),
Prentice-Hall
,
Englewood Cliffs, NJ
.
30.
Lemaire
,
M.
,
2013
,
Structural Reliability
,
Wiley
,
New York
.
31.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes – A New Method for Structural Optimization
,”
Int. J. Numer. Meth. Eng.
,
24
(
2
), pp.
359
373
.
32.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2001
,
The Elements of Statistical Learning (Springer Series in Statistics)
, Vol.
1
,
Springer
,
New York
.
33.
Rackwitz
,
R.
, and
Flessler
,
B.
,
1978
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
(
5
), pp.
489
494
.
34.
Breitung
,
K.
,
1984
, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
,
110
(
3
), pp.
357
366
.
35.
Mansour
,
R.
, and
Olsson
,
M.
,
2014
, “
A Closed-form Second-order Reliability Method Using Noncentral Chi-squared Distributions
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101402
.
36.
Choi
,
K.
, and
Youn
,
B.
,
2002
, “
On Probabilistic Approaches for Reliability-Based Design Optimization (RBDO)
,”
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Atlanta, GA
,
Sept. 4–6
, p.
5472
.
37.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
An Investigation of Nonlinearity of Reliability-based Design Optimization Approaches
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
403
411
.
38.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Enriched Performance Measure Approach for Reliability-Based Design Optimization.
,”
AIAA J.
,
43
(
4
), pp.
874
884
.
This content is only available via PDF.
You do not currently have access to this content.