Soft locomotion robots are intrinsically compliant and have a large number of degrees of freedom. They lack rigid components that provide them with higher flexibility, and they have no joints that need protection from liquids or dirt. However, the hand-design of soft robots is often a lengthy trail-and-error process. This work presents the computational design of virtual, soft locomotion robots using an approach that integrates simulation feedback. The computational approach consists of three stages: (1) generation, (2) evaluation through simulation, and (3) optimization. Here, designs are generated using a spatial grammar to explicitly guide the type of solutions generated and exclude infeasible designs. The soft material simulation method developed and integrated is stable and sufficiently fast for use in a highly iterative simulated annealing search process. The resulting virtual designs exhibit a large variety of expected and unexpected gaits, thus demonstrating the method capabilities. Finally, the optimization results and the spatial grammar are analyzed to understand and map the challenges of the problem and the search space.

References

References
1.
Hiller
,
J. D.
, and
Lipson
,
H.
, “
Evolving Amorphous Robots
,”
Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems
,
Odense, Denmark
,
Aug. 19–23, 2010
.
2.
Rieffel
,
J.
,
Knox
,
D.
,
Smith
,
S.
, and
Trimmer
,
B.
,
2013
, “
Growing and Evolving Soft Robots
,”
Artif. Life
,
20
(
1
), pp.
143
162
.
3.
Deimel
,
R.
, and
Brock
,
O.
,
2014
, “
A Novel Type of Compliant, Underactuated Robotic Hand for Dexterous Grasping
,”
Proc. Rob.: Sci. Syst.
,
35
(
1-3
), pp.
161
185
.
4.
Wang
,
J.-Y.
, and
Lan
,
C.-C.
,
2014
, “
A Constant-Force Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
.
5.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem.- Int. Edition
,
123
(
8
), pp.
1930
1935
.
6.
Trivedi
,
D.
,
Dienno
,
D.
, and
Rahn
,
C. D.
,
2008
, “
Optimal, Model-Based Design of Soft Robotic Manipulators
,”
ASME J. Mech. Des.
,
130
(
9
), pp.
091402
.
7.
Calisti
,
M.
,
Picardi
,
G.
, and
Laschi
,
C.
,
2017
, “
Fundamentals of Soft Robot Locomotion
,”
J. R. Soc. Interface
,
14
(
130
).
8.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
9.
Tolley
,
M. T.
,
Shepherd
,
R. F.
,
Mosadegh
,
B.
,
Galloway
,
K. C.
,
Wehner
,
M.
,
Karpelson
,
M.
,
Wood
,
R. J.
, and
Whitesides
,
G. M.
,
2014
, “
A Resilient, Untethered Soft Robot
,”
Soft Rob.
,
1
(
3
), pp.
213
223
.
10.
Du Pasquier
,
C.
,
2017
, “
Modular Pneumatic Toolkit: An Application of 4d-Printing
,” Master’s thesis,
ETH Zürich
.
11.
Mao
,
S.
,
Dong
,
E.
,
Jin
,
H.
,
Xu
,
M.
, and
Low
,
K. H.
, “
Locomotion and Gait Analysis of Multi-limb Soft Robots Driven by Smart Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Daejeon, Korea
,
Oct. 9–14, 2016
.
12.
Sugiyama
,
Y.
, and
Sugiyama
,
Y.
, “
Crawling and Jumping of Deformable Soft Robot
,”
2004 IEEE/RSJ International Conference on Itelligent Robots and Systems
,
Sendai, Japan
,
Sept. 28–Oct. 2, 2004
.
13.
Sims
,
K.
, “
Evolving virtual creatures
,”
SIGGRAPH '94 Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques
,
Orlando, Florida, USA
,
July 24–29, 1994
.
14.
Hiller
,
J.
, and
Lipson
,
H.
,
2012
, “
Automatic Design and Manufacture of Soft Robots
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
457
466
.
15.
Stiny
,
G.
,
1980
, “
Introduction to Shape and Shape Grammars
,”
Environ. Planning B
,
7
(
Nov
.), pp.
343
351
.
16.
McKay
,
A.
,
Chase
,
S.
,
Shea
,
K.
, and
Chau
,
H. H.
,
2012
, “
Spatial Grammar Implementation: From Theory to Useable Software
,”
Artif. Intell. Eng. Design, Anal. Manuf.
26
(
2
), pp.
143
159
.
17.
Hsiao
,
S.-W.
, and
Chen
,
C.-H.
,
1997
, “
A Semantic and Shape Grammar Based Approach for Product Design
,”
Design Stud.
18
(
3
), pp.
275
296
.
18.
Pugliese
,
M. J.
, and
Cagan
,
J.
,
2002
, “
Capturing a Rebel: Modeling the Harley-Davidson Brand Through a Motorcycle Shape Grammar
,”
Res. Eng. Design
,
13
(
Apr.
), pp.
139
156
.
19.
Teboul
,
O.
,
Kokkinos
,
I.
,
Simon
,
L.
,
Koutsourakis
,
P.
, and
Paragios
,
N.
, “
Shape Parsing via Reinforcement Learning
,”
Conference on Computer Vision and Pattern Recognition
,
Colorado Spring, CO, USA
,
June 20–25, 2011
.
20.
Shea
,
K.
, and
Cagan
,
J.
,
1997
, “
Innovative Dome Design-Applying Geodesic Patterns with Shape Annealing.pdf
,”
Artif. Intell. Eng., Design, Anal. Manuf.
,
11
(
05
), pp.
379
394
.
21.
Zimmermann
,
L.
,
Chen
,
T.
, and
Shea
,
K.
,
2017
, “
Generative Shape Design using 3D Spatial Grammars, Simulation and Optimization
,”
Design Computing and Cognition’16
, pp.
297
316
.
22.
Königseder
,
C.
, and
Shea
,
K.
,
2016
, “
Visualizing Relations Between Grammar Rules, Objectives, and Search Space Exploration in Grammar-Based Computational Design Synthesis
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101101
.
23.
Moseley
,
P.
,
Florez
,
J. M.
,
Sonar
,
H. A.
,
Agarwal
,
G.
,
Curtin
,
W.
, and
Paik
,
J.
,
2016
, “
Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method
,”
Adv. Eng. Mater.
,
18
(
6
), pp.
978
988
.
24.
Suzumori
,
K.
,
Endo
,
S.
,
Kanda
,
T.
,
Kato
,
N.
, and
Suzuki
,
H.
, “
A Bending Pneumatic Rubber Actuator Realizing Soft-Bodied Manta Swimming Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Roma, Italy
,
April 10–14, 2007
.
25.
Fang
,
G.
,
Matte
,
C.-D.
,
Kwok
,
T.-H.
, and
Wang
,
C. C.
, “
Geometry-based direct simulation for multi-material soft robots
,”
2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE
,
Brisbane, Australia
,
May 21–25, 2018
.
26.
Cheney
,
N.
,
MacCurdy
,
R.
,
Clune
,
J.
, and
Lipson
,
H.
, “
Unshackling Evolution: Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding
,”
Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation - GECCO ’13
,
Amsterdam, Netherlands
,
July 6–10, 2013
.
27.
Couman
,
E.
,
2017
,
Bullet Real-Time Physics Simulation
, https://pybullet.org.
28.
Bender
,
J.
,
Koschier
,
D.
,
Charrier
,
P.
, and
Weber
,
D.
,
2014
, “
Position-Based Simulation of Continuous Materials
,”
Comput. Graph. (Pergamon)
,
44
(
1
), pp.
1
10
.
29.
Jansson
,
J.
, and
Vergeest
,
J. S.
,
2002
, “
A Discrete Mechanics Model for Deformable Bodies
,”
Comput.-Aided Design
,
34
(
12
), pp.
913
928
.
30.
van Diepen
,
M.
, and
Shea
,
K.
, “
A Spatial Grammar Method for the Computational Design Synthesis
,”
ASME DETC Conference 2018.
,
Quebec City, Canada
,
Aug. 26–29, 2018
.
31.
Triki
,
E.
,
Collette
,
Y.
, and
Siarry
,
P.
,
2005
, “
A Theoretical Study on the Behavior of Simulated Annealing Leading to a New Cooling Schedule
,”
Eur. J. Oper. Res.
,
166
(
1 SPEC. ISS
.), pp.
77
92
.
You do not currently have access to this content.