Here we describe a problem class with combined architecture, plant, and control design for dynamic engineering systems. The design problem class is characterized by architectures comprised of linear physical elements and nested co-design optimization problems employing linear-quadratic dynamic optimization. The select problem class leverages a number of existing theory and tools and is particularly effective due to the symbiosis between labeled graph representations of architectures, dynamic models constructed from linear physical elements, linear-quadratic dynamic optimization, and the nested co-design solution strategy. A vehicle suspension case study is investigated and a specifically constructed architecture, plant, and control design problem is described. The result was the automated generation and co-design problem evaluation of 4374 unique suspension architectures. The results demonstrate that changes to the vehicle suspension architecture can result in improved performance, but at the cost of increased mechanical complexity. Furthermore, the case study highlights a number of challenges associated with finding solutions to the considered class of design problems. One such challenge is the requirement to use simplified design problem elements/models; thus, the goal of these early-stage studies are to identify new architectures that are worth investigating more deeply. The results of higher-fidelity studies on a subset of high-performance architectures can then be used to select a final system architecture. In many aspects, the described problem class is the simplest case applicable to graph-representable, dynamic engineering systems.

References

References
1.
Kasturi
,
P.
, and
Dupont
,
P.
,
Aug.
1998
, “
Constrained Optimal Control of Vibration Dampers
,”
J. Sound Vib.
,
215
(
3
), pp.
499
509
.
2.
Hrovat
,
D.
,
Oct.
1997
, “
Survey of Advanced Suspension Developments and Related Optimal Control Applications
,”
Automatica
,
33
(
10
), pp.
1781
1817
.
3.
Hrovat
,
D.
,
June
1993
, “
Applications of Optimal Control to Advanced Automotive Suspension Design
,”
ASME J. Dyn. Syst., Meas., Control
,
115
(
2B
), pp.
328
342
.
4.
Gobbi
,
M.
, and
Mastinu
,
G.
,
Aug.
2001
, “
Analytical Description and Optimization of the Dynamic Behaviour of Passively Suspended Road Vehicles
,”
J. Sound Vib.
,
245
(
3
), pp.
457
481
.
5.
He
,
Y.
, and
McPhee
,
J.
,
May
2005
, “
Multidisciplinary Design Optimization of Mechatronic Vehicles with Active Suspensions
,”
J. Sound Vib.
,
283
(
1–2
), pp.
217
241
.
6.
Allison
,
J. T.
,
May
2008
, “
Optimal Partitioning and Coordination Decisions in Decomposition-Based Design Optimization
,” Ph.D. dissertation,
The University of Michigan
,
Ann Arbor, MI
.
7.
Chen
,
M. Z. Q.
,
Papageorgiou
,
C.
,
Scheibe
,
F.
,
Wang
,
F.-c.
, and
Smith
,
M.
,
2009
, “
The Missing Mechanical Circuit Element
,”
IEEE Circuits Syst. Mag.
,
9
(
1
), pp.
10
26
.
8.
Chen
,
M. Z. Q.
,
Hu
,
Y.
, and
Wang
,
F.-C.
,
Oct.
2015
, “
Passive Mechanical Control With a Special Class of Positive Real Controllers: Application to Passive Vehicle Suspensions
,”
J. Dyn. Syst., Meas., Control
,
137
(
12
), p.
121013
.
9.
Papageorgiou
,
C.
, and
Smith
,
M.
,
May
2006
, “
Positive Real Synthesis Using Matrix Inequalities for Mechanical Networks: Application to Vehicle Suspension
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp.
423
435
.
10.
Smith
,
M. C.
,
Oct.
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Automat. Control
,
47
(
10
), pp.
1648
1662
.
11.
Wang
,
F.-C.
, and
Chan
,
H.-A.
,
Dec.
2011
, “
Vehicle Suspensions With a Mechatronic Network Strut
,”
Vehicle Syst. Dyn.
,
49
(
5
), pp.
811
830
.
12.
Deshmukh
,
A. P.
,
Herber
,
D. R.
, and
Allison
,
J. T.
,
2015
, “
Bridging the Gap Between Open-Loop and Closed-Loop Control in Co-Design: A Framework for Complete Optimal Plant and Control Architecture Design
,”
American Control Conference
,
Chicago, IL
,
July 1–3
.
13.
Koch
,
G.
, and
Kloiber
,
T.
,
Jan.
2014
, “
Driving State Adaptive Control of an Active Vehicle Suspension System
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
44
57
.
14.
Bourmistrova
,
A.
,
Storey
,
I.
, and
Subic
,
A.
,
2005
, “
Multiobjective Optimisation of Active and Semi-Active Suspension Systems With Application of Evolutionary Algorithm
,”
International Conference on Modelling and Simulation
,
Melbourne, Australia
,
Dec. 12–15
.
15.
Fathy
,
H. K.
,
Papalambros
,
P. Y.
,
Ulsoy
,
A. G.
, and
Hrovat
,
D.
,
2003
, “
Nested Plant/Controller Optimization With Application to Combined Passive/Active Automotive Suspensions
,”
American Control Conference
,
Denver, CO
,
June 4–6
.
16.
Alyaqout
,
S. F.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2007
, “
Combined Design and Robust Control of a Vehicle Passive/Active Suspension
,”
European Control Conference
,
Kos, Greece
,
July 2–5
.
17.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
June
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Design
,
136
(
8
), p.
081003
.
18.
Ulsoy
,
A. G.
,
Hrovat
,
D.
, and
Tseng
,
T.
,
Mar.
1994
, “
Stability Robustness of LQ and LQG Active Suspensions
,”
J. Dyn. Syst., Meas., Control
,
116
(
1
), pp.
123
131
.
19.
Borutzky
,
W.
,
2010
,
Bond Graph Methodology
,
1st ed.
,
Springer
,
New York
.
20.
Kypuros
,
J. A.
,
2013
,
System Dynamics and Control With Bond Graph Modeling
,
CRC Press
,
Boca Raton, FL
.
21.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
2012
,
System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems
,
5th ed.
,
Wiley
,
New York
.
22.
Gonzalez
,
G.
, and
Galindo
,
R.
, Sept.
2008
, “
Removing the Algebraic Loops of a Bond Graph Model
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
222
(
6
), pp.
543
556
.
23.
Maschke
,
B. M.
, and
Villarroya
,
M.
, Nov.
1995
, “
Properties of Descriptor Systems Arising From Bond Graph Models
,”
Math. Comput. Simul.
,
39
(
5–6
), pp.
491
497
.
24.
Cellier
,
F. E.
, and
Nebot
,
A.
,
2005
, “
The Modelica Bond Graph Library
,”
International Modelica Conference
,
Hamburg, Germany
,
Mar. 7–8
.
25.
Wu
,
Z.
,
Campbell
,
M. I.
, and
Fernández
,
B. R.
,
Apr.
2008
, “
Bond Graph Based Automated Modeling for Computer-Aided Design of Dynamic Systems
,”
ASME J. Mech. Design
,
130
(
4
), p.
041102
.
26.
The MathWorks
. “
Linearize
,” https://www.mathworks.com/help/slcontrol/ug/linearize.html, Accessed on March 3, 2018.
27.
Herber
,
D. R.
,
Dec.
2017
, “
Advances in Combined Architecture, Plant, and Control Design
,” Ph.D. dissertation,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
28.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
American Control Conference
,
Arlington, VA
,
June 25–27
.
29.
Herber
,
D. R.
, and
Allison
,
J. T.
,
Jan.
2018
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Control Design Problems
,”
ASME J. Mech. Design
,
141
(
1
), p.
011402
.
30.
Chilan
,
C. M.
,
Herber
,
D. R.
,
Nakka
,
Y. K.
,
Chung
,
S.-J.
,
Allison
,
J. T.
,
Aldrich
,
J. B.
, and
Alvarez-Salazar
,
O. S.
,
Sept.
2017
, “
Co-design of Strain-Actuated Solar Arrays for Spacecraft Precision Pointing and Jitter Reduction
,”
AIAA J.
,
55
(
9
), pp.
3180
3195
.
31.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
Jan.
2016
, “
Multidisciplinary Dynamic Optimization of Horizontal Axis Wind Turbine Design
,”
Struct. Multidisciplinary Optim.
,
53
(
1
), pp.
15
27
.
32.
Lawler
,
E. L.
,
1976
,
Combinatorial Optimization: Networks and Matroids
,
Holt, Rinehart and Winston
,
New York
.
33.
Herber
,
D. R.
,
Guo
,
T.
, and
Allison
,
J. T.
,
Apr.
2017
, “
Enumeration of Architectures With Perfect Matchings
,”
ASME J. Mech. Design
,
139
(
5
), p.
051403
.
34.
Rispoli
,
F. J.
,
2007
, “Applications of Subgraph Enumeration.”
Applications of Discrete Mathematics
, updated ed.
McGraw-Hill
,
New York
.
35.
Wyatt
,
D. F.
,
Wynn
,
D. C.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
,
Apr.
2011
, “
Supporting Product Architecture Design Using Computational Design Synthesis With Network Structure Constraints
,”
Res. Eng. Design
,
23
(
1
), pp.
17
52
.
36.
Herber
,
D. R.
, and
Allison
,
J. T.
,
Dec.
2017
, “Enhancements to the Perfect Matching-Based Tree Algorithm for Generating Architectures,” Technical Report UIUC-ESDL-2017-02,
Engineering System Design Lab
,
Urbana, IL
.
37.
Smith
,
M. C.
, and
Wang
,
F.-C.
,
Dec.
2004
, “
Performance Benefits in Passive Vehicle Suspensions Employing Inerters
,”
Vehicle Syst. Dyn.
,
42
(
4
), pp.
235
257
.
38.
Liu
,
T.
,
Azarm
,
S.
, and
Chopra
,
N.
,
Oct.
2017
, “
On Decentralized Optimization for a Class of Multisubsystem Codesign Problems
,”
ASME J. Mech. Design
,
139
(
12
), p.
121404
.
39.
Anderson
,
B. D. O.
, and
Vongpanitlerd
,
S.
,
1973
,
Network Analysis and Synthesis: A Modern Systems Theory Approach
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
40.
Chen
,
M. Z. Q.
, and
Smith
,
M. C.
,
2008
, “Electrical and Mechanical Passive Network Synthesis,”
Recent Advances in Learning and Control
, Vol.
371
,
V. D.
Blondel
,
S. P.
Boyd
, and
H.
Kimura
, eds.
Springer
,
Berlin
, pp.
35
50
.
41.
Silvas
,
E.
,
Hofman
,
T.
,
Murgovski
,
N.
,
Etman
,
P.
, and
Steinbuch
,
M.
,
Jan.
2017
, “
Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles
,”
IEEE Trans. Vehicular Tech.
,
66
(
1
), pp.
57
70
.
42.
Bayrak
,
A. E.
,
Kang
,
N.
, and
Papalambros
,
P. Y.
,
June
2016
, “
Decomposition-based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design
,”
ASME J. Mech. Design
,
138
(
7
), p.
071405
.
43.
Allison
,
J. T.
, and
Herber
,
D. R.
, Apr.
2014
, “
Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.
44.
Koeln
,
J. P.
,
Williams
,
M. A.
,
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2016
, “
Experimental Validation of Graph-Based Modeling for Thermal Fluid Power Flow Systems
,”
ASME Dynamic Systems and Control Conference
,
Minneapolis, MN
,
Oct. 12–14
.
45.
Åkesson
,
J.
,
2008
, “
Optimica—An Extension of Modelica Supporting Dynamic Optimization
,”
International Modelica Conference
,
Bielefeld, Germany
,
Mar. 3-4
.
46.
Patterson
,
M. A.
, and
Rao
,
A. V.
,
2014
, “
GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming
,”
ACM Trans. Math. Soft.
41
(
1
), pp.
1
37
.
47.
Peddada
,
S. R. T.
,
Herber
,
D. R.
,
Pangborn
,
H. C.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2018
, “
Optimal Flow Control and Single Split Architecture Exploration for Fluid-Based Thermal Management
,”
ASME International Design Engineering Technical Conferences
,
Quebec City, Canada
,
Aug. 26–29
.
48.
Silvas
,
E.
,
Hofman
,
T.
,
Serebrenik
,
A.
, and
Steinbuch
,
M.
,
Aug.
2015
, “
Functional and Cost-Based Automatic Generator for Hybrid Vehicles Topologies
,”
IEEE/ASME Trans. Mech.
,
20
(
4
), pp.
1561
1572
.
49.
Münzer
,
C.
,
Helms
,
B.
, and
Shea
,
K.
, July
2013
, “
Automatically Transforming Object-Oriented Graph-Based Representations into Boolean Satisfiability Problems for Computational Design Synthesis
,”
ASME J. Mech. Design
,
135
(
10
), p.
101001
.
50.
Snavely
,
G. L.
, and
Papalambros
,
P. Y.
,
1993
, “
Abstraction as a Configuration Design Methodology
,”
Advances in Design Automation
,
Albuquerque, NM
,
Sept. 19-22
, pp.
297
305
.
51.
Faulon
,
J.-L.
,
Churchwell
,
C. J.
, and
Visco
,
D. P.
,
May
2003
, “
The Signature Molecular Descriptor. 2. Enumerating Molecules From Their Extended Valence Sequences
,”
J. Chem. Inf. Comput. Sci.
,
43
(
3
), pp.
721
734
.
52.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
June
2016
, “
Topology Generation for Hybrid Electric Vehicle Architecture Design
,”
ASME J. Mech. Design
,
138
(
8
), p.
081401
.
53.
Schmidt
,
L. C.
,
Shetty
,
H.
, and
Chase
,
S. C.
,
Dec.
2000
, “
A Graph Grammar Approach for Structure Synthesis of Mechanisms
,”
ASME J. Mech. Design
,
122
(
4
), pp.
371
376
.
54.
Campbell
,
M. I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
, Mar.
2000
, “
Agent-Based Synthesis of Electromechanical Design Configurations
,”
ASME J. Mech. Design
,
122
(
1
), pp.
61
69
.
55.
Das
,
A.
, and
Vemuri
,
R.
,
2007
, “
An Automated Passive Analog Circuit Synthesis Framework Using Genetic Algorithms
,”
IEEE Computer Society Annual Symposium on VLSI
.
56.
Grimbleby
,
J. B.
,
Dec.
2000
, “
Automatic Analogue Circuit Synthesis Using Genetic Algorithms
,”
IEE Proc.—Circuits, Devices Syst.
,
147
(
6
), pp.
319
323
.
57.
Ochotta
,
E. S.
,
Rutenbar
,
R. A.
, and
Carley
,
L. R.
, Mar.
1996
, “
Synthesis of High-Performance Analog Circuits in ASTRX/OBLX
,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.
,
15
(
3
), pp.
273
294
.
58.
Guo
,
T.
,
Herber
,
D. R.
, and
Allison
,
J. T.
,
2018
, “
Reducing Evaluation Cost for Circuit Synthesis Using Active Learning
,”
ASME International Design Engineering Technical Conferences
,
Quebec City, Canada
,
Aug. 26–29
, p.
V02AT03A011
.
This content is only available via PDF.
You do not currently have access to this content.