Recently, design for additive manufacturing has been proposed to maximize product performance through the rational and integrated design of the product, its materials, and their manufacturing processes. Searching design solutions in such a multidimensional design space is a challenging task. Notably, no existing design support method is both rapid and tailored to the design process. In this study, we propose a holistic approach that applies data-driven methods in design search and optimization at successive stages of a design process. More specifically, a two-step surrogate model-based design method is proposed for the embodiment and detailed design stages. The Bayesian network classifier is used as the reasoning framework to explore the design space in the embodiment design stage, while the Gaussian process regression model is used as the evaluation function for an optimization method to exploit the design space in detailed design. These models are constructed based on one dataset that is created by the Latin hypercube sampling method and then refined by the Markov Chain Monte Carlo sampling method. This cost-effective data-driven approach is demonstrated in the design of a customized ankle brace that has a tunable mechanical performance by using a highly stretchable design concept with tailored stiffnesses.

References

References
1.
Rosen
,
D. W.
,
2014
, “
Research Supporting Principles for Design for Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
9
(
4
), pp.
225
232
.
2.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided. Des. Appl.
,
4
(
5
), pp.
585
594
.
3.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.-H.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer-Verlag London
,
London
.
4.
Rosen
,
D. W.
,
2015
, “
A Set-Based Design Method for Material-Geometry Structures by Design Space Mapping
,”
ASME Design Automation Conference
,
Boston, MA
,
Aug. 2–5
,
ASME
Paper No. DETC2015-46760.
5.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3591
3603
.
6.
Li
,
J.
,
Jin
,
R.
, and
Yu
,
H. Z.
,
2018
, “
Integration of Physically-Based and Data-Driven Approaches for Thermal Field Prediction in Additive Manufacturing
,”
Mater. Des.
,
139
, pp.
473
485
.
7.
Kamath
,
C.
,
2016
, “
Data Mining and Statistical Inference in Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1659
1677
.
8.
Yan
,
W.
,
Lin
,
S.
,
Kafka
,
O. L.
,
Lian
,
Y.
,
Yu
,
C.
,
Liu
,
Z.
,
Yan
,
J.
,
Wolff
,
S.
,
Wu
,
H.
,
Ndip-Agbor
,
E.
,
Mozaffar
,
M.
,
Ehmann
,
K.
,
Cao
,
J.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2018
, “
Data-Driven Multi-Scale Multi-Physics Models to Derive Process–Structure–Property Relationships for Additive Manufacturing
,”
Comput. Mech.
,
61
(
5
), pp.
521
541
.
9.
Morris
,
C.
,
Bekker
,
L.
,
Haberman
,
M. R.
, and
Seepersad
,
C. C.
,
2018
, “
Design Exploration of Reliably Manufacturable Materials and Structures With Applications to Negative Stiffness Metamaterials and Microstereolithography
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111415
.
10.
Matthews
,
J.
,
Klatt
,
T.
,
Morris
,
C.
,
Seepersad
,
C. C.
,
Haberman
,
M.
, and
Shahan
,
D.
,
2016
, “
Hierarchical Design of Negative Stiffness Metamaterials Using a Bayesian Network Classifier
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041404
.
11.
Shahan
,
D. W.
, and
Seepersad
,
C. C.
,
2012
, “
Bayesian Network Classifiers for Set-Based Collaborative Design
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071001
.
12.
Malak
,
R. J.
,
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J. J.
,
2009
, “
Multi-Attribute Utility Analysis in Set-Based Conceptual Design
,”
Comput. Des.
,
41
(
3
), pp.
214
227
.
13.
Weiss
,
L. E.
,
Amon
,
C. H.
,
Finger
,
S.
,
Miller
,
E. D.
,
Romero
,
D.
,
Verdinelli
,
I.
,
Walker
,
L. M.
, and
Campbell
,
P. G.
,
2005
, “
Bayesian Computer-Aided Experimental Design of Heterogeneous Scaffolds for Tissue Engineering
,”
Comput. Des.
,
37
(
11
), pp.
1127
1139
.
14.
Pacheco
,
J. E.
,
Amon
,
C. H.
, and
Finger
,
S.
,
2003
, “
Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
664
672
.
15.
Williams
,
C. B.
,
Mistree
,
F.
, and
Rosen
,
D. W.
,
2011
, “
A Functional Classification Framework for the Conceptual Design of Additive Manufacturing Technologies
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121002
.
16.
Unal
,
M.
,
Miller
,
S. W.
,
Chhabra
,
J. P. S.
,
Warn
,
G. P.
,
Yukish
,
M. A.
, and
Simpson
,
T. W.
,
2017
, “
A Sequential Decision Process for the System-Level Design of Structural Frames
,”
Struct. Multidiscip. Optim.
,
56
(
5
), pp.
991
1011
.
17.
Chen
,
W.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1997
, “
A Robust Concept Exploration Method for Enhancing Productivity in Concurrent Systems Design
,”
Concurr. Eng.
,
5
(
3
), pp.
203
217
.
18.
Choi
,
H.
,
McDowell
,
D. L.
,
Allen
,
J. K.
,
Rosen
,
D.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Robust Multiscale Materials Design
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031402
.
19.
Sharpe
,
C.
,
Morris
,
C.
,
Goldsberry
,
B.
,
Seepersad
,
C. C.
, and
Haberman
,
M. R.
,
2017
, “
Bayesian Network Structure Optimization for Improved Design Space Mapping for Design Exploration With Materials Design Applications
,”
Design Automation Conference
,
Cleveland, OH
,
Aug. 6–9
,
ASME
Paper No. DETC2017-67643.
20.
Gaier
,
A.
,
Asteroth
,
A.
, and
Mouret
,
J.-B.
,
2018
, “
Data-Efficient Design Exploration Through Surrogate-Assisted Illumination
,”
Evol. Comput.
,
26
(
3
), pp.
381
410
.
21.
Larson
,
B. J.
, and
Mattson
,
C. A.
,
2012
, “
Design Space Exploration for Quantifying a System Model’s Feasible Domain
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041010
.
22.
Couckuyt
,
I.
,
Declercq
,
F.
,
Dhaene
,
T.
,
Rogier
,
H.
, and
Knockaert
,
L.
,
2010
, “
Surrogate-Based Infill Optimization Applied to Electromagnetic Problems
,”
Int. J. RF Microw. Comput.-Aided Eng.
,
20
(
5
), pp.
492
501
.
23.
Simpson
,
T. W.
, and
Mistree
,
F.
,
2001
, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
).
24.
Qian
,
Z.
,
Seepersad
,
C. C.
,
Joseph
,
V. R.
,
Allen
,
J. K.
, and
Wu
,
C. F. J.
,
2006
, “
Building Surrogate Models Based on Detailed and Approximate Simulations
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
668
677
.
25.
Chen
,
W.
, and
Fuge
,
M.
,
2017
, “
Beyond the Known: Detecting Novel Feasible Domains Over an Unbounded Design Space
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111405
.
26.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
27.
Simpson
,
T. W.
,
Poplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
28.
Haario
,
H.
,
Laine
,
M.
,
Mira
,
A.
, and
Saksman
,
E.
,
2006
, “
DRAM: Efficient Adaptive MCMC
,”
Stat. Comput.
,
16
(
4
), pp.
339
354
.
29.
Ahlfeld
,
R.
,
Montomoli
,
F.
,
Belouchi
,
B.
,
Belkouchi
,
B.
, and
Montomoli
,
F.
,
2016
, “
Sparse Approximation Moment-Based Arbitrary Polynomial Chaos
,”
J. Comput. Phys.
,
320
, pp.
1
16
.
30.
Belegundu
,
A. D.
, and
Chandrupatla
,
T. R.
,
1999
,
Optimization Concepts and Applications in Engineering
,
Cambridge University Press
,
New York
.
31.
Thiele
,
F.
,
Schuhmacher
,
S.
,
Schwaller
,
C.
,
Plüss
,
S.
,
Rhiner
,
J.
,
List
,
R.
, and
Lorenzetti
,
S.
,
2018
, “
Restrictions in the Ankle Sagittal- and Frontal-Plane Range of Movement During Simulated Walking With Different Types of Orthoses
,”
J. Funct. Morphol. Kinesiol.
,
3
(
2
), p.
21
.
32.
Chen
,
J.
,
Siegler
,
S.
, and
Schneck
,
C. D.
,
1988
, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joint—Part II: Flexibility Characteristics
,”
ASME J. Biomech. Eng.
,
110
(
4
), pp.
374
385
.
33.
Siegler
,
S.
,
Chen
,
J.
, and
Schneck
,
C. D.
,
1988
, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints—Part I: Kinematics
,”
ASME J. Biomech. Eng.
,
110
(
4
), pp.
364
373
.
34.
Jang
,
K. I.
,
Chung
,
H. U.
,
Xu
,
S.
,
Lee
,
C. H.
,
Luan
,
H.
,
Jeong
,
J.
,
Cheng
,
H.
,
Kim
,
G. T.
,
Han
,
S. Y.
,
Lee
,
J. W.
,
Kim
,
J.
,
Cho
,
M.
,
Miao
,
F.
,
Yang
,
Y.
,
Jung
,
H. N.
,
Flavin
,
M.
,
Liu
,
H.
,
Kong
,
G. W.
,
Yu
,
K. J.
,
Rhee
,
S. I.
,
Chung
,
J.
,
Kim
,
B.
,
Kwak
,
J. W.
,
Yun
,
M. H.
,
Kim
,
J. Y.
,
Song
,
Y. M.
,
Paik
,
U.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Soft Network Composite Materials with Deterministic and Bio-Inspired Designs
,”
Nat. Commun.
,
6
(
1
), pp.
1
11
.
You do not currently have access to this content.