Benefiting from small incisions, reduced risk of infection, less pain, and fast recovery, minimally invasive surgery has shown tremendous advantages for patients. In these kinds of procedures, remote center-of-motion (RCM) mechanisms play an important role in performing operations through small incisions. Inspired by the Peaucellier–Lipkin straight-line cell, this paper presents the design and verification of a new type of planar two degree-of-freedom (DOF) RCM mechanism. A synthesized planar RCM mechanism is realized by a symmetric linkage actuated by two circular motion generators. The main merit of the proposed 2DOF RCM mechanism is its straightforward kinematics, which results in a simple control scheme. One of the candidate mechanisms, which is simple in structure and easy to fabricate, is intensively investigated. A prototype was built, on which preliminary experiments have been conducted, to verify the feasibility of the proposed new mechanism. The experimental results show that the fabricated 2DOF prototype has a nearly stationary remote center of motion. Therefore, the prototype has potential applicability in robot-assisted minimally invasive surgeries.

References

References
1.
Satava
,
R.
,
1992
, “
Robotics, Telepresence and Virtual Reality: A Critical Analysis of the Future of Surgery
,”
Minimally Invasive Ther. Allied Technol.
,
1
(
1
), pp.
357
363
.
2.
Taylor
,
R.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer-Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
.
3.
Kuo
,
C.
,
Dai
,
J.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
2
), pp.
127
45
.
4.
Rahimy
,
E.
,
Wilson
,
J.
,
Tsao
,
T.
,
Schwartz
,
S.
, and
Hubschman
,
J.
,
2013
, “
Robot-Assisted Intraocular Surgery: Development of the IRISS and Feasibility Studies in an Animal Model
,”
Eye
,
27
(
8
), pp.
972
978
.
5.
Isaacs
,
R.
,
Podichetty
,
V.
,
Santiago
,
P.
,
Sandhu
,
F.
,
Spears
,
J.
,
Kelly
,
K.
,
Rice
,
L.
, and
Fessler
,
R.
,
2005
, “
Minimally Invasive Microendoscopy-Assisted Transforaminal Lumbar Interbody Fusion With Instrumentation
,”
J. Neurosurg.: Spine
,
3
(
2
), pp.
98
105
.
6.
Elayaperumal
,
S.
,
Cutkosky
,
M.
,
Renaud
,
P.
, and
Daniel
,
B.
,
2015
, “
A Passive Parallel Master-Slave Mechanism for Magnetic Resonance Imaging-Guided Interventions
,”
ASME J. Med. Devices
,
9
(
1
), p.
011008
.
7.
Hamlin
,
G.
, and
Sanderson
,
A.
,
1994
, “
A Novel Concentric Multilink Spherical Joint With Parallel Robotics Applications
,”
IEEE
International Conference on Robotics and Automation, San Diego, CA, May 8–13, pp.
1267
1272
.
8.
Taylor
,
R.
,
Funda
,
J.
,
Grossman
,
D.
,
Karidis
,
J.
, and
LaRose
,
D.
,
1995
, “
Remote Center-of-Motion Robot for Surgery
,” U.S. Patent No. 5,397,323.
9.
Madhani
,
A.
,
Niemeyer
,
G.
, and
Salisbury
,
J.
,
1998
, “
The Black Falcon: A Teleoperated Surgical Instrument for Minimally Invasive Surgery
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Victoria, BC, Oct. 17, pp.
936
944
.
10.
Niemeyer
,
G.
,
Nowlin
,
W.
, and
Guthart
,
G.
,
2002
, “
Alignment of Master and Slave in a Minimally Invasive Surgical Apparatus
,” U.S. Patent No. 6,364,888.
11.
Kuo
,
C.-H.
, and
Dai
,
J.
,
2009
,
Robotics for Minimally Invasive Surgery: A Historical Review From the Perspective of Kinematics
,
Springer
,
Dordrecht, The Netherlands
, pp.
337
354
.
12.
Zong
,
G.
,
Pei
,
X.
,
Yu
,
J.
, and
Bi
,
S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1585
1595
.
13.
Hempel
,
E.
,
Fischer
,
H.
,
Gumb
,
L.
,
Hohn
,
T.
,
Krause
,
H.
,
Voges
,
U.
,
Breitwieser
,
H.
,
Gutmann
,
B.
,
Durke
,
J.
,
Bock
,
M.
, and
Melzer
,
A.
,
2003
, “
An MRI-Compatible Surgical Robot for Precise Radiological Interventions
,”
Comput. Aided Surg.
,
8
(
4
), pp.
180
191
.
14.
Zemiti
,
N.
,
Morel
,
G.
,
Ortmaier
,
T.
, and
Bonnet
,
N.
,
2007
, “
Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery
,”
IEEE/ASME Trans. Mechatronics
,
12
(
2
), pp.
143
153
.
15.
He
,
Y.
,
Zhang
,
P.
,
Jin
,
H.
,
Hu
,
Y.
, and
Zhang
,
J.
,
2016
, “
Type Synthesis for Remote Center of Motion Mechanisms Based on Coupled Motion of Two Degrees-of-Freedom
,”
ASME J. Mech. Des.
,
138
(
12
), p.
122301
.
16.
Liu
,
S.
,
Chen
,
B.
,
Caro
,
S.
,
Briot
,
S.
,
Harewood
,
L.
, and
Chen
,
C.
,
2016
, “
A Cable Linkage With Remote Center of Motion
,”
Mech. Mach. Theory
,
105
, pp.
583
605
.
17.
Liu
,
S.
,
Harewood
,
L.
,
Chen
,
B.
, and
Chen
,
C.
,
2016
, “
A Skeletal Prototype of Surgical Arm Based on Dual-Triangular Mechanism
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041015
.
18.
Li
,
J.
,
Zhang
,
G.
,
Xing
,
Y.
,
Liu
,
H.
, and
Wang
,
S.
,
2014
, “
A Class of 2-Degree-of-Freedom Planer Remote Center-of-Motion Mechanisms Based on Virtual Parallelograms
,”
ASME J. Mech. Rob.
,
6
(
3
), p. 031014.
19.
Kong
,
K.
,
Li
,
J.
,
Zhang
,
H.
,
Li
,
J.
, and
Wang
,
S.
,
2016
, “
Kinematic Design of a Generalized Double Parallelogram Based Remote Center-of-Motion Mechanism for Minimally Invasive Surgical Robot
,”
ASME J. Med. Devices
,
10
(
4
), p.
041006
.
20.
Huang
,
L.
,
Yang
,
Y.
,
Xiao
,
J.
, and
Su
,
P.
,
2015
, “
Type Synthesis of 1R1T Remote Center of Motion Mechanisms Based on Pantograph Mechanisms
,”
ASME J. Mech. Des.
,
138
(
1
), p.
014501
.
21.
Nisar
,
S.
,
Endo
,
T.
, and
Matsuno
,
F.
,
2017
, “
Design and Kinematic Optimization of a Two Degrees-of-Freedom Planar Remote Center of Motion Mechanism for Minimally Invasive Surgery Manipulators
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031013
.
22.
Zhang
,
F.
,
Zhang
,
X.
,
Hang
,
L.
, and
Furukawa
,
T.
,
2017
, “
Type Synthesis of n-Parallelogram-Based Surgical Arm With Remote Actuated Configuration
,”
IFToMM Asian Conference on Mechanism and Machine Science
, pp.
183
194
.
23.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Gosselin
,
C.
,
2005
, “
Analytical Kinematics Models and Special Geometries of a Class of 4-DOF Parallel Mechanisms
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1046
1055
.
24.
Lum
,
M.
,
Friedman
,
D.
,
Sankaranarayanan
,
G.
,
King
,
H.
,
Fodero
,
K.
,
Leuschke
,
R.
,
Hannaford
,
B.
,
Rosen
,
J.
, and
Sinanan
,
M.
,
2009
, “
The RAVEN: Design and Validation of a Telesurgery System
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1183
1197
.
25.
Beira
,
R.
,
Santos-Carreras
,
L.
,
Rognini
,
G.
,
Bleuler
,
H.
, and
Clavel
,
R.
,
2011
, “
Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
Appl. Bionics Biomech.
,
8
(
2
), pp.
191
208
.
26.
Kuo
,
C.
, and
Dai
,
J.
,
2012
, “
Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
6
(
2
), p. 021008.
27.
Li
,
J.
,
Zhang
,
G.
,
Mueller
,
A.
, and
Wang
,
S.
,
2013
, “
A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091009
.
28.
Li
,
Q.
,
Herve
,
J.
, and
Huang
,
P.
,
2017
, “
Type Synthesis of a Special Family of Remote Center-of-Motion Parallel Manipulators With Fixed Linear Actuators for Minimally Invasive Surgery
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031012
.
29.
Kempe
,
A.
,
1877
,
How to Draw a Straight Line
,
Macmillan and Co
,
London
.
30.
Suh
,
C.
, and
Radcliffe
,
C.
,
1978
,
Kinematics and Mechanisms Design
,
Wiley
,
New York
.
31.
Ferguson
,
J. M.
,
Cai
,
L. Y.
,
Reed
,
A.
,
Siebold
,
M.
,
De
,
S.
,
Herrell
,
S. D.
, and
Webster
,
R. J.
,
2018
, “
Toward Image-Guided Partial Nephrectomy With the Da Vinci Robot: Exploring Surface Acquisition Methods for Intraoperative Re-Registration
,”
Proc. SPIE
,
10576
, p. 1057609.
You do not currently have access to this content.