Topologies of large deformation contact-aided compliant mechanisms (CCMs), with self and mutual contact, exemplified via path generation applications, are designed using the continuum synthesis approach. Design domain is parameterized using honeycomb tessellation. Assignment of material to each cell, and generation of rigid contact surfaces, are accomplished via suitably sizing and positioning negative circular masks using the stochastic hill-climber search. To facilitate contact analysis, boundary smoothing is implemented. Mean value coordinates are employed to compute shape functions, as many regular hexagonal cells get degenerated into irregular, concave polygons as a consequence of boundary smoothing. Both geometric and material nonlinearities are considered. The augmented Lagrange multiplier method with a formulated active set strategy is employed to incorporate both self and mutual contact. Synthesized contact-aided compliant continua trace paths with single, and importantly, multiple kinks and experience multiple contact interactions pertaining to both self and mutual contact modes.

References

References
1.
Mankame
,
N. D.
, and
Ananthasuresh
,
G.
,
2004
, “
Topology Optimization for Synthesis of Contact-Aided Compliant Mechanisms Using Regularized Contact Modeling
,”
Comput. Struct.
,
82
(
15–16
), pp.
1267
1290
.
2.
Kumar
,
P.
,
Sauer
,
R. A.
, and
Saxena
,
A.
,
2016
, “
Synthesis of c0 Path-Generating Contact-Aided Compliant Mechanisms Using the Material Mask Overlay Method
,”
ASME J. Mech. Des.
,
138
(
6
), p.
062301
.
3.
Wriggers
,
P.
,
2006
,
Computational Contact Mechanics
,
Springer
, Heidelberg, Germany.
4.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, New York.
5.
Ananthasuresh
,
G.
,
Kota
,
S.
, and
Gianchandani
,
Y.
,
1994
, “
A Methodical Approach to the Design of Compliant Micromechanisms
,”
Solid-State Sensor and Actuator Workshop
, Hilton Head Island, SC, pp.
189
192
.
6.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
,
1998
, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
42
(
3
), pp.
535
559
.
7.
Frecker
,
M.
,
Ananthasuresh
,
G.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
8.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
(
1
), pp.
36
49
.
9.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
10.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
.
11.
Pedersen
,
C. B.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
.
12.
Saxena
,
A.
,
2005
, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
745
752
.
13.
Swan
,
C. C.
, and
Rahmatalla
,
S. F.
,
2004
, “
Design and Control of Path-Following Compliant Mechanisms
,”
ASME
Paper No. DETC2004-57441.
14.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
504
510
.
15.
Zahn
,
C. T.
, and
Roskies
,
R. Z.
,
1972
, “
Fourier Descriptors for Plane Closed Curves
,”
IEEE Trans. Comput.
,
100
(
3
), pp.
269
281
.
16.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
,
2007
, “
Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1056
1063
.
17.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
,
2010
, “
Unified Synthesis of Compact Planar Path-Generating Linkages With Rigid and Deformable Members
,”
Struct. Multidiscip. Optim.
,
41
(
6
), pp.
863
879
.
18.
Saxena
,
A.
,
2008
, “
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082304
.
19.
Saxena
,
A.
,
2011
, “
An Adaptive Material Mask Overlay Method: Modifications and Investigations on Binary, Well Connected Robust Compliant Continua
,”
ASME J. Mech. Des.
,
133
(
4
), p.
041004
.
20.
Saxena
,
A.
,
2011
, “
Topology Design With Negative Masks Using Gradient Search
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
629
649
.
21.
Saxena
,
A.
, and
Sauer
,
R. A.
,
2013
, “
Combined Gradient-Stochastic Optimization With Negative Circular Masks for Large Deformation Topologies
,”
Int. J. Numer. Methods Eng.
,
93
(
6
), pp.
635
663
.
22.
Mankame
,
N. D.
, and
Ananthasuresh
,
G.
,
2002
, “
Contact Aided Compliant Mechanisms: Concept and Preliminaries
,”
ASME
Paper No. DETC2002/MECH-34211.
23.
Mankame
,
N.
, and
Ananthasuresh
,
G.
,
2007
, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Int. J. Numer. Methods Eng.
,
69
(
12
), pp.
2564
2605
.
24.
Reddy
,
B. V. S. N.
,
Naik
,
S. V.
, and
Saxena
,
A.
,
2012
, “
Systematic Synthesis of Large Displacement Contact-Aided Monolithic Compliant Mechanisms
,”
ASME J. Mech. Des.
,
134
(
1
), p.
011007
.
25.
Tummala
,
Y.
,
Wissa
,
A.
,
Frecker
,
M.
, and
Hubbard
,
J. E.
,
2014
, “
Design and Optimization of a Contact-Aided Compliant Mechanism for Passive Bending
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031013
.
26.
Kumar
,
P.
,
Saxena
,
A.
, and
Sauer
,
R. A.
,
2017
, “
Implementation of Self Contact in Path Generating Compliant Mechanisms
,”
Microactuators and Micromechanisms
,
Springer
, Cham, pp.
251
261
.
27.
Cannon
,
J. R.
, and
Howell
,
L. L.
,
2005
, “
A Compliant Contact-Aided Revolute Joint
,”
Mech. Mach. Theory
,
40
(
11
), pp.
1273
1293
.
28.
Moon
,
Y.-M.
,
2007
, “
Bio-Mimetic Design of Finger Mechanism With Contact Aided Compliant Mechanism
,”
Mech. Mach. Theory
,
42
(
5
), pp.
600
611
.
29.
Aguirre
,
M.
,
Hayes
,
G.
,
Frecker
,
M.
,
Adair
,
J.
, and
Antolino
,
N.
, “
Fabrication and Design of a Nanoparticulate Enabled Micro Forceps
,”
ASME
Paper No. DETC2008-49917.
30.
Mehta
,
V.
,
Frecker
,
M.
, and
Lesieutre
,
G. A.
,
2009
, “
Stress Relief in Contact-Aided Compliant Cellular Mechanisms
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091009
.
31.
Saxena
,
A.
,
2013
, “
A Contact-Aided Compliant Displacement-Delimited Gripper Manipulator
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041005
.
32.
Calogero
,
J.
,
Frecker
,
M.
,
Hasnain
,
Z.
, and
Hubbard
,
J. E.
, Jr
,
2016
, “
A Dynamic Spar Numerical Model for Passive Shape Change
,”
Smart Mater. Struct.
,
25
(
10
), p.
104006
.
33.
Sauer
,
R. A.
, and
De Lorenzis
,
L.
,
2015
, “
An Unbiased Computational Contact Formulation for 3d Friction
,”
Int. J. Numer. Methods Eng.
,
101
(
4
), pp.
251
280
.
34.
Saxena
,
R.
, and
Saxena
,
A.
, “
On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms
,”
ASME
Paper No. DETC2003/DAC-48806.
35.
Langelaar
,
M.
,
2007
, “
The Use of Convex Uniform Honeycomb Tessellations in Structural Topology Optimization
,”
Seventh World Congress on Structural and Multidisciplinary Optimization
, Seoul, South Korea, May 21–25, pp.
21
25
.
36.
Saxena
,
R.
, and
Saxena
,
A.
,
2007
, “
On Honeycomb Representation and Sigmoid Material Assignment in Optimal Topology Synthesis of Compliant Mechanisms
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1082
1098
.
37.
Talischi
,
C.
,
Paulino
,
G. H.
, and
Le
,
C. H.
,
2009
, “
Honeycomb Wachspress Finite Elements for Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
(
6
), pp.
569
583
.
38.
Talischi
,
C.
,
Paulino
,
G. H.
,
Pereira
,
A.
, and
Menezes
,
I. F.
,
2012
, “
Polytop: A Matlab Implementation of a General Topology Optimization Framework Using Unstructured Polygonal Finite Element Meshes
,”
Struct. Multidiscip. Optim.
,
45
(
3
), pp.
329
357
.
39.
Saxena
,
A.
,
2010
, “
On an Adaptive Mask Overlay Topology Synthesis Method
,”
ASME
Paper No. DETC2010-29113.
40.
Talischi
,
C.
,
Paulino
,
G. H.
,
Pereira
,
A.
, and
Menezes
,
I. F.
,
2012
, “
Polymesher: A General-Purpose Mesh Generator for Polygonal Elements Written in Matlab
,”
Struct. Multidiscip. Optim.
,
45
(
3
), pp.
309
328
.
41.
Talischi
,
C.
,
Paulino
,
G. H.
,
Pereira
,
A.
, and
Menezes
,
I. F.
,
2010
, “
Polygonal Finite Elements for Topology Optimization: A Unifying Paradigm
,”
Int. J. Numer. Methods Eng.
,
82
(
6
), pp.
671
698
.
42.
Kumar
,
P.
, and
Saxena
,
A.
,
2015
, “
On Topology Optimization With Embedded Boundary Resolution and Smoothing
,”
Struct. Multidiscip. Optim.
,
52
(
6
), pp.
1135
1159
.
43.
Corbett
,
C. J.
, and
Sauer
,
R. A.
,
2014
, “
Nurbs-Enriched Contact Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
275
, pp.
55
75
.
44.
Kumar
,
P.
, and
Saxena
,
A.
,
2013
, “
On Embedded Recursive Boundary Smoothing in Topology Optimization With Polygonal Mesh and Negative Masks
,”
First International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013)
, Roorkee, India, Dec. 18–20, pp.
568
575
.
45.
Floater
,
M. S.
,
2003
, “
Mean Value Coordinates
,”
Comput. Aided Geom. Des.
,
20
(
1
), pp.
19
27
.
46.
Hormann
,
K.
, and
Floater
,
M. S.
,
2006
, “
Mean Value Coordinates for Arbitrary Planar Polygons
,”
ACM Trans. Graph.
,
25
(
4
), pp.
1424
1441
.
47.
Sukumar
,
N.
, and
Tabarraei
,
A.
,
2004
, “
Conforming Polygonal Finite Elements
,”
Int. J. Numer. Methods Eng.
,
61
(
12
), pp.
2045
2066
.
48.
Sukumar
,
N.
, and
Malsch
,
E.
,
2006
, “
Recent Advances in the Construction of Polygonal Finite Element Interpolants
,”
Arch. Comput. Methods Eng.
,
13
(
1
), pp.
129
163
.
49.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2005
,
The Finite Element Method for Solid and Structural Mechanics
, Butterworth-Heinemann, Oxford, UK.
50.
Wriggers
,
P.
,
2008
,
Nonlinear Finite Element Methods
,
Springer Science & Business Media
, Berlin, Germany.
51.
Kumar
,
P.
,
2017
, “
Synthesis of Large Deformable Contact-Aided Compliant Mechanisms Using Hexagonal Cells and Negative Circular Masks
,” Ph.D. thesis, Indian Institute of Technology Kanpur, Kanpur, India.
52.
Knuth
,
D. E.
,
1998
,
The Art of Computer Programming: Sorting and Searching
, Vol.
3
,
Pearson Education
, Upper Saddle River, NJ.
53.
Russell
,
S. J.
, and
Norvig
,
P.
,
2003
,
Artificial Intelligence: A Modern Approach
,
2nd ed.
,
Pearson Education
, Upper Saddle River, NJ.
54.
Tikhonov
,
A. N.
,
Goncharsky
,
A.
,
Stepanov
,
V.
, and
Yagola
,
A. G.
,
2013
,
Numerical Methods for the Solution of Ill-Posed Problems
, Vol.
328
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
55.
Kumar
,
P.
,
Sauer
,
R. A.
, and
Saxena
,
A.
,
2015
, “
On Synthesis of Contact Aided Compliant Mechanisms Using the Material Mask Overlay Method
,”
ASME
Paper No. DETC2015-47064.
56.
Guest
,
J. K.
,
Prévost
,
J.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
.
57.
Canfield
,
S. L.
,
Chlarson
,
D. L.
,
Shibakov
,
A.
,
Richardson
,
J. D.
, and
Saxena
,
A.
,
2007
, “
Multi-Objective Optimization of Compliant Mechanisms Including Failure Theories
,”
ASME
Paper No. DETC2007-35618.
You do not currently have access to this content.