The purpose of product dissection is to teach students how a product works and provide them with inspiration for new ideas. However, little is known about how variations in dissection activities impact creative outcomes or engineering self-efficacy (ESE) and creative self-efficacies (CSE). This is important since the goal of engineering education is to produce capable and creative engineers. The current study was, thus, developed to address this research gap through a factorial experiment. The results showed that idea development was not impacted by dissection conditions but that ESE and CSE were increased through these activities. The results also showed that higher levels of CSE and ESE had alternate effects on novel idea development indicating they are at odds in engineering education.

References

References
1.
Giges
,
N. S.
,
2014
, “
Changes Afoot in Engineering Education
,” The American Society of Mechanical Engineers, New York, accessed July 26, 2017, https://www.asme.org/career-education/articles/undergraduate-students/changes-afoot-in-engineering-education
2.
Jamieson
,
L. H.
, and
Lohmann
,
J. R.
,
2012
, “
Innovation With Impact: Creating a Culture for Scholarly and Systematic Innovation in Engineering Education
,” American Society for Engineering Education, Washington, DC.
3.
West
,
R. E.
,
Tateishi
,
I.
,
Wright
,
G. A.
, and
Fonoimoana
,
M.
,
2012
, “
Innovation 101: Promoting Undergraduate Innovation Through a Two-Day Boot Camp
,”
Creativity Res. J.
,
24
(
2–3
), pp.
243
251
.
4.
Brown
,
T.
,
2008
, “
Design Thinking
,” Harvard Business Review, Harvard Business School Publishing, Boston, MA, pp.
84
92
.
5.
Dym
,
C. L.
,
Agogino
,
A. M.
,
Eris
,
O.
,
Frey
,
D. D.
, and
Leifer
,
L. J.
,
2005
, “
Engineering Design Thinking, Teaching and Learning
,”
J. Eng. Educ.
,
94
(1), pp.
103
120
.
6.
Skaggs
,
P.
,
Fry
,
R.
, and
Wright
,
G.
,
2012
, “
Creating a Mindset for Innovation
,”
J. Strategic Innovation Sustainability
,
7
(
3
), p.
95
.
7.
Charyton
,
C.
,
2014
, “
An Overview of the Relevance of Creative Engineering Design: Background
,”
Creative Engineering Design Assessment
,
Springer
, London, pp.
1
10
.
8.
Deslauriers
,
L.
,
Schelew
,
E.
, and
Wieman
,
C.
,
2011
, “
Improved Learning in a Large-Enrollment Physics Class
,”
Science
,
332
(
6031
), pp.
862
864
.
9.
Prince
,
M. J.
, and
Felder
,
R. M.
,
2006
, “
Inductive Teaching and Learning Methods: Definitions, Comparisons, and Research Bases
,”
J. Eng. Educ.
,
95
(
2
), pp.
123
138
.
10.
Smith
,
K. A.
,
Sheppard
,
S. D.
,
Johnson
,
D. W.
, and
Johnson
,
R. T.
,
2005
, “
Pedagogies of Engagement: Classroom‐Based Practices
,”
J. Eng. Educ.
,
94
(
1
), pp.
87
101
.
11.
Amabile
,
T.
,
1996
,
Creativitiy in Context
,
Westview Press
,
Boulder, CO
.
12.
Runco
,
M. A.
, and
Jaeger
,
G. J.
,
2012
, “
The Standard Definition of Creativity
,”
Creativity Res. J.
,
24
(
1
), pp.
92
96
.
13.
Sternberg
,
R.
,
1999
,
Handbook of Creativity
,
Cambridge University Press
,
New York
.
14.
Nelson
,
B.
, and
Yen
,
J.
,
2009
, “
Refined Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
30
(
6
), pp.
737
743
.
15.
Shah
,
J. J.
,
Vargas Hernandez
,
N.
, and
Smith
,
S. M.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.
16.
Dym
,
C. L.
,
Agogino
,
A. M.
,
Eris
,
O.
,
Frey
,
D. D.
, and
Leifer
,
L. J.
,
2005
, “
Engineering Design Thinking, Teaching, and Learning
,”
J. Eng. Educ.
,
94
(
1
), pp.
103
120
.
17.
Canadian Engineering Accreditation Board
,
2014
, “
2014 Accreditation Criteria and Procedures
,” Engineers Canada, Ottawa, ON, Canada.
18.
International Engineering Alliance
,
2013
, “
Graduate Attributes and Professional Competencies
,” International Engineering Alliance, Washington, DC.
19.
Genco
,
N.
,
Holtta-Otto
,
K.
, and
Seepersad
,
C. C.
,
2012
, “
An Experimental Investigation of the Innovation Capabilities of Undergraduate Engineering Students
,”
J. Eng. Educ.
,
101
(
1
), pp.
60
81
.
20.
Sheppard
,
S. D.
,
1992
, “
Mechanical Dissection: An Experience in How Things Work
,”
Engineering Education: Curriculum Innovation & Integration
, Santa Barbara, CA , Jan. 6–10, pp.
1
8
.
21.
Lamancusa
,
J. S.
,
Torres
,
M.
,
Kumar
,
V.
, and
Jorgensen
,
J.
, “
Learning Engineering by Product Dissection
,”
ASEE Annnual Conference
, Washington, DC, June 23–26, pp.
1
13
.
22.
Lamancusa
,
J. S.
,
Jorgensen
,
J. E.
, and
Zayas‐Castro
,
J. L.
,
1997
, “
The Learning Factory—A New Approach to Integrating Design and Manufacturing Into the Engineering Curriculum
,”
J. Eng. Educ.
,
86
(
2
), pp.
103
112
.
23.
McKenna
,
A. F.
,
Chen
,
W.
, and
Simpson
,
T.
,
2008
, “
Exploring the Impact of Virtual and Physical Dissection Activities on Students's Understanding of Engineering Design Principles
,”
ASME
Paper No. DETC2008-49783
.
24.
Brereton
,
M.
,
Sheppard
,
S.
, and
Leifer
,
L.
,
1995
, “
How Students Connect Engineering Fundamentals to Hardware Design: Observations and Implications for the Design of Curriculum and Assessment Methods
,”
Tenth International Conference on Engineering Design
, pp.
336
342
.
25.
Toh
,
C.
,
Miller
,
S.
, and
Simpson
,
T.
,
2015
, “
The Impact of Virtual Product Dissection Environments on Student Design Learning and Self-Efficacy
,”
J. Eng. Des.
,
26
(
1–3
), pp.
48
73
.
26.
Devendorf
,
M.
,
Lewis
,
K.
,
Simpson
,
T. W.
,
Stone
,
R. B.
, and
Regli
,
W. C.
,
2007
, “
Evaluating the Use of Cyberinfrastructure in the Classroom to Enhance Product Dissection
,”
ASME
Paper No. DETC2007-35549.
27.
Devendorf
,
M.
,
Lewis
,
K.
,
Simpson
,
T. W.
,
Stone
,
R. B.
, and
Regli
,
W. C.
,
2009
, “
Evaluating the Use of Digital Product Repositories to Enhance Product Dissection Activities in the Classroom
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), pp.
1
8
.
28.
Simpson
,
T. W.
,
Lewis
,
K. E.
,
Stone
,
R. B.
, and
Regli
,
W. C.
,
2007
, “
Using Cyberinfrastructure to Enhance Product Dissection in the Classroom
,”
Industrial Engineering Research Conference
, Nashville, TN, May 19–23.
29.
Luszczynska
,
A.
, and
Schwarzer
,
R.
,
2005
, “
Social Cognitive Theory
,” Predicting Health Behaviour, Open University Press, New York, pp.
127
169
.
30.
Bandura
,
A.
,
1977
, “
Self-Efficacy: Toward a Unifying Theory of Behavioral Change
,”
Psychol. Rev.
,
84
(
2
), p.
191
.
31.
Starkey
,
E. M.
,
McKay
,
A. S.
,
Hunter
,
S. T.
,
Miller
,
S. R.
, and
Review
,
I.
,
2016
, “
Piecing Together Product Dissection: How Dissection Conditions Impact Student Learning and Cognitive Load
,”
ASME J. Mech. Des.
,
140
(5), p.
052001
.
32.
Toh
,
C. A.
,
Miller
,
S. R.
, and
Kremer
,
G. E.
,
2013
, “
The Role of Personality and Team-Based Product Dissection on Fixation Effects
,”
Adv. Eng. Educ.
,
3
(
4
), pp.
1
23
.
33.
Toh
,
C. A.
,
Miller
,
S. R.
, and
Okudan Kremer
,
G. E.
,
2014
, “
The Impact of Team-Based Product Dissection on Design Novelty
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041004
.
34.
Viswanathan
,
V.
, and
Linsey
,
J. S.
, 2011, “
Design Fixation in Physical Modelling: An Investigation on the Role of Sunk Cost
,”
ASME
Paper No. DETC2011-47862
.
35.
Toh
,
C.
, and
Miller
,
S. R.
, 2013, “
Exploring the Utility of Product Dissection for Early-Phase Idea Generation
,”
ASME
Paper No. DETC2013-13096
.
36.
Tierney
,
P.
, and
Farmer
,
S. M.
,
2002
, “
Creative Self-Efficacy: Its Potential Antecedents and Relationship to Creative Performance
,”
Acad. Manage. J.
,
45
(
6
), pp.
1137
1148
.
37.
Beghetto
,
R. A.
,
2006
, “
Creative Self-Efficacy: Correlates in Middle and Secondary Students
,”
Creativity Res. J.
,
18
(
4
), pp.
447
457
.
38.
Gong
,
Y.
,
Huang
,
J.-C.
, and
Farh
,
J.-L.
,
2009
, “
Employee Learning Orientation, Transformational Leadership, and Employee Creativity: The Mediating Role of Employee Creative Self-Efficacy
,”
Acad. Manage. J.
,
52
(
4
), pp.
765
778
.
39.
Hutchison
,
M. A.
,
Follman
,
D. K.
,
Sumpter
,
M.
, and
Bodner
,
G. M.
,
2006
, “
Factors Influencing the Self-Efficacy Beliefs of First-Year Engineering Students
,”
J. Eng. Educ.
,
95
(
1
), pp.
39
47
.
40.
Carberry
,
A. R.
,
Lee
,
H. S.
, and
Ohland
,
M. W.
,
2010
, “
Measuring Engineering Design Self‐Efficacy
,”
J. Eng. Educ.
,
99
(
1
), pp.
71
79
.
41.
Toh
,
C. A.
, and
Miller
,
S. R.
,
2014
, “
The Impact of Virtual Dissection on Engineering Student Learning and Self-Efficacy
,”
ASME
Paper No.
DETC2014-35196.
42.
Grantham
,
K.
,
Okudan
,
G. L.
,
Simpson
,
T. W.
, and
Ashour
,
O.
, 2010, “
A Study on Situated Cognition: Product Dissection's Effect on Redesign Activities
,”
ASME
Paper No. DETC2010-28334
.
43.
Otto
,
K. N.
, and
Wood
,
K. L.
,
1998
, “
Product Evolution: A Reverse Engineering and Redesign Methodology
,”
Res. Eng. Des.
,
10
(
4
), pp.
226
243
.
44.
Lefever
,
D.
, and
Wood
,
K.
, 1996, “
Design for Assembly Techniques in Reverse Engineering and Redesign
,”
ASME
Design Theory and Methodology Conference, Irvine, CA, Aug. 18–22.
45.
Lamancusa
,
J. S.
,
Jorgensen
,
J. E.
, and
Fridley
,
J. L.
, 1996, “
Product Dissection—A Tool for Benchmarking in the Process of Teaching Design
,”
Frontiers in Education Conference
, pp.
1317
1321
.
46.
Toh
,
C.
, and
Miller
,
S. R.
, 2013, “
Product Dissection or Visual Inspection? the Impact of Designer-Product Interactions on Engineering Design Creativity
,”
ASME
Paper No. DETC2013-13087
47.
Sio
,
U. N.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2015
, “
Fixation or Inspiration? a Meta-Analytic Review of the Role of Examples on Design Processes
,”
Des. Stud.
,
39
, pp.
70
99
.
48.
Agogué
,
M.
,
Kazakçi
,
A.
,
Hatchuel
,
A.
,
Masson
,
P.
,
Weil
,
B.
,
Poirel
,
N.
, and
Cassotti
,
M.
,
2014
, “
The Impact of Type of Examples on Originality: Explaining Fixation and Stimulation Effects
,”
J. Creative Behav.
,
48
(
1
), pp.
1
12
.
49.
Herring
,
S. R.
,
Chang
,
C.-C.
,
Krantzler
,
J.
,
Bailey
,
B. P.
,
Greenberg
,
S.
,
Hudson
,
S.
,
Hinkley
,
K.
,
RingelMorris
,
M.
, and
Olsen
,
D.
,
2009
, “
Getting Inspired! Understanding How and Why Examples Are Used in Creative Design Practice
,”
CHI Conference on Human Factors in Computing Systems
, Boston, MA, Apr. 4–9, pp.
87
96
.
50.
Pertulla
,
M.
, and
Sipila
,
P.
,
2007
, “
The Idea Exposure Paradigm in Design Idea Generation
,”
J. Eng. Des.
,
18
(
1
), pp.
93
102
.
51.
Marsh
,
R.
,
Ward
,
T.
, and
Landau
,
J.
,
1999
, “
The Inadvertent Use of Prior Knowledge in a Generative Cognitive Task
,”
Mem. Cognit.
,
27
(
1
), pp.
94
105
.
52.
Linsey
,
J.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041003
.
53.
Jansson
,
D.
, and
Smith
,
S.
,
1991
, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
.
54.
Sweller
,
J.
,
Ayres
,
P.
, and
Kalyuga
,
S.
,
2011
,
Cognitive Load Theory
,
Springer
,
New York
.
55.
Mayer
,
R. E.
,
2005
, “
Principles for Reducing Extraneous Processing in Multimedia Learning: Coherence, Signaling, Redundancy, Spatial Conguity, and Tempora Contiguity Principles
,”
The Cambridge Handbook of Multimedia Learning
,
Cambridge University Press
,
Cambridge
, UK, pp.
183
200
.
56.
Schweppe
,
J.
, and
Rummer
,
R.
,
2014
, “
Attention, Working Memory, and Long-Term Memory in Multimedia Learning: An Integrated Perspective Based on Process Models of Working Memory
,”
Educ. Psychol. Rev.
,
26
(
2
), pp.
285
306
.
57.
Mayer
,
R. E.
, and
Chandler
,
P.
,
2001
, “
When Learning Is Just a Click Away: Does Simple User Interaction Foster Deeper Understanding of Multimedia Messages?
,”
J. Educ. Psychol.
,
93
(
2
), p.
390
.
58.
Tabbers
,
H. K.
,
Martens
,
R. L.
, and
Merriënboer
,
J. J.
,
2004
, “
Multimedia Instructions and Cognitive Load Theory: Effects of Modality and Cueing
,”
Br. J. Educ. Psychol.
,
74
(
1
), pp.
71
81
.
59.
Van Merriënboer
,
J. J.
,
Kester
,
L.
, and
Paas
,
F.
,
2006
, “
Teaching Complex Rather Than Simple Tasks: Balancing Intrinsic and Germane Load to Enhance Transfer of Learning
,”
Appl. Cognit. Psychol.
,
20
(
3
), pp.
343
352
.
60.
Feinberg
,
S.
, and
Murphy
,
M.
,
2000
, “
Applying Cognitive Load Theory to the Design of Web-Based Instruction
,”
IEEE
Professional Communication Society International Professional Communication Conference and 18th Annual ACM International Conference on Computer Documentation: Technology & Teamwork
, Cambridge, MA, Sept. 24–27, pp.
353
360
.
61.
Diehl
,
M.
, and
Stroebe
,
W.
,
1991
, “
Productivity Loss in Idea-Generating Groups: Tracking down the Blocking Effect
,”
J. Pers. Soc. Psychol.
,
61
(
3
), p.
392
62.
Gentner
,
D.
,
1989
, “
The mechanisms of analogical learning
,”
Similarity and analogical reasoning
, S. Vosniadou and A. Ortony, eds.,
Cambridge University Press
,
New York
, pp. 199–241.
63.
Chan
,
J.
,
Fu
,
K.
,
Schunn
,
C.
,
Cagan
,
J.
,
Wood
,
K. L.
, and
Kotovsky
,
K.
,
2011
, “
On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081004
.
64.
Gentner
,
D.
,
Rattermann
,
M. J.
, and
Forbus
,
K. D.
,
1993
, “
The Roles of Similarity in Transfer: Separating Retrievability From Inferential Soundness
,”
Cognit. Psychol.
,
25
(
4
), pp.
524
575
.
65.
Campbell
,
D. T.
,
1960
, “
Blind Variation and Selective Retentions in Creative Thought as in Other Knowledge Processes
,”
Psychol. Rev.
,
67
(
6
), p.
380
.
66.
Wilson
,
J. O.
,
Rosen
,
D.
,
Nelson
,
B. A.
, and
Yen
,
J.
,
2010
, “
The Effects of Biological Examples in Idea Generation
,”
Des. Stud.
,
31
(
2
), pp.
169
186
.
67.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of “Near” and “Far”: the Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
68.
Linsey
,
J.
,
Murphy
,
J.
,
Markman
,
A.
,
Wood
,
K.
, and
Kurtoglu
,
T.
, 2006, “
Representing Analogies: Increasing the Probability of Innovation
,”
ASME
Paper No. DETC2006-99383
.
69.
Klahr
,
D.
, and
Wallace
,
J.
,
1973
, “
The Role of Quantification Operators in the Development of Conservation of Quantity
,”
Cognit. Psychol.
,
4
(
3
), pp.
301
327
.
70.
Perkins
,
D. N.
, and
Salomon
,
G.
,
1992
, “
Transfer of Learning
,”
Contribution to the International Encyclopedia of Education
, 2nd ed., Pergamon Press, Oxford, England.
71.
Viswanathan
,
V.
, and
Linsey
,
J. S.
,
2013
, “
Examining Design Fixation in Engineering Idea Generation: The Role of Example Modality
,”
Int. J. Des. Creativity Innovation
,
1
(
2
), p.
109
.
72.
Toh
,
C. A.
, and
Miller
,
S. R.
,
2014
, “
The Impact of Example Modality and Physical Interactions on Design Creativity
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091004
.
73.
Zacharia
,
Z. C.
,
Olympiou
,
G.
, and
Papaevripidou
,
M.
,
2008
, “
Effects of Experimenting With Physical and Virtual Manipulatives on Students' Conceptual Understanding in Heat and Temperature
,”
J. Res. Sci. Teach.
,
45
(
9
), pp.
1021
1035
.
74.
Pajares
,
F.
,
1996
, “
Self-Efficacy Beliefs in Academic Settings
,”
Rev. Educ. Res.
,
66
(
4
), pp.
543
578
.
75.
Zimmerman
,
B. J.
,
2000
, “
Self-Efficacy: An Essential Motive to Learn
,”
Contemp. Educ. Psychol.
,
25
(
1
), pp.
82
91
.
76.
Shell
,
D. F.
,
Murphy
,
C. C.
, and
Bruning
,
R. H.
,
1989
, “
Self-Efficacy and Outcome Expectancy Mechanisms in Reading and Writing Achievement
,”
J. Educ. Psychol.
,
81
(
1
), p.
91
.
77.
Bouffard-Bouchard
,
T.
,
Parent
,
S.
, and
Larivee
,
S.
,
1991
, “
Influence of Self-Efficacy on Self-Regulation and Performance Among Junior and Senior High-School Age Students
,”
Int. J. Behav. Develop.
,
14
(
2
), pp.
153
164
.
78.
Zimmerman
,
B. J.
,
Bandura
,
A.
, and
Martinez-Pons
,
M.
,
1992
, “
Self-Motivation for Academic Attainment: The Role of Self-Efficacy Beliefs and Personal Goal Setting
,”
Am. Educ. Res. J.
,
29
(
3
), pp.
663
676
.
79.
Schunk
,
D. H.
,
1985
, “Self-efficacy and classroom learning,”
Psychology in the Schools
,
22
(2), pp.
208
223
.
80.
Peters
,
M. L.
,
2013
, “
Examining the Relationships Among Classroom Climate, Self-Efficacy, and Achievement in Undergraduate Mathematics: A Multi-Level Analysis
,”
Int. J. Sci. Math. Educ.
,
11
(2), pp.
459
480
.
81.
Chemers
,
M. M.
,
Hu
,
L-T.
, and
Garcia
,
B. F.
,
2001
, “
Academic Self-Efficacy and First Year College Student Performance and Adjustment
,”
J. Educ. Psychol.
,
93
(
1
), p.
55
82.
Susskind
,
J. E.
,
2005
, “
PowerPoint's Power in the Classroom: Enhancing Students' Self-Efficacy and Attitudes
,”
Comput. Educ.
,
45
(
2
), pp.
203
215
.
83.
Seth
,
D.
,
Tangorra
,
J.
, and
Ibrahim
,
A.
,
2015
, “
Measuring Undergraduate Students' Self-Efficacy in Engineering Design in a Project-Based Design Course
,”
IEEE Frontiers in Education Conference
(
FIE
), El Paso, TX, Oct. 21–24, pp.
1
8
.
84.
Lent
,
R. W.
,
Brown
,
S. D.
, and
Larkin
,
K. C.
,
1984
, “
Relation of Self-Efficacy Expectations to Academic Achievement and Persistence
,”
J. Couns. Psychol.
,
31
(
3
), p.
356
85.
Mamaril
,
N. J. A.
,
2014
, “
Measuring Undergraduate Students' Engineering Self-Efficacy: A Scale Validation Study
,”
Ph. D thesis
, Educational, School, and Counseling Psychology, Columbia, MO.
86.
Hunter
,
S. T.
, and
Cushenbery
,
L.
,
2014
, “
Is Being a Jerk Necessary for Originality? Examining the Role of Disagreeableness in the Sharing and Utilization of Original Ideas
,”
J. Bus. Psychol.
,
30
(4), pp.
621
639
.
87.
Mathisen
,
G. E.
, and
Bronnick
,
K. S.
,
2009
, “
Creative Self-Efficacy: An Intervention Study
,”
Int. J. Educ. Res.
,
48
(
1
), pp.
21
29
.
88.
Robbins
,
T. L.
, and
Kegley
,
K.
,
2010
, “
Playing With Thinkertoys to Build Creative Abilities Through Online Instruction
,”
Thinking Skills Creativity
,
5
(
1
), pp.
40
48
.
89.
Ume
,
C.
, and
Timmerman
,
M.
,
1995
, “
Mechatronics Instruction in the Mechanical Engineering Curriculum at Georgia Tech
,”
Mechatronics
,
5
(
7
), pp.
723
741
.
90.
Giurgiutiu
,
V.
,
Lyons
,
J.
,
Rocheleau
,
D.
, and
Liu
,
W.
,
2005
, “
Mechatronics/Microcontroller Education for Mechanical Engineering Students at the University of South Carolina
,”
Mechatronics
,
15
(
9
), pp.
1025
1036
.
91.
Stajkovic
,
A. D.
, and
Luthans
,
F.
,
1998
, “
Self-Efficacy and Work-Related Performance: A Meta-Analysis
,”
Psychol. Bull.
,
124
(
2
), p.
240
.
92.
Starkey
,
E. M.
,
McKay
,
A. S.
,
Hunter
,
S. T.
, and
Miller
,
S. R.
, 2017, “
Dissecting Creativity: How Dissection Virtuality, Analogical Distance, and Product Complexity Impact Creativity and Self-Efficacy
,”
Design Computing and Cognition
, Springer, Cham.
93.
Starkey
,
E. M.
,
McKay
,
A. S.
,
Hunter
,
S. T.
, and
Miller
,
S. R.
, 2016, “
Let's Get Physical? the Impact of Dissection Modality on Engineering Student Design Learning
,”
ASME
Paper No. DETC2016-60364
.
94.
Doyle
,
T. E.
,
Baetz
,
B. W.
, and
Lopes
,
B.
,
2009
, “
First-Year Engineering Bicycle Dissection as an Introduction to Sustainable Design
,”
CDEN/C2E2
Conference: McMaster University, Hamilton, ON, Canada, July 27–29.
95.
Tsang
,
P. S.
, and
Velazquez
,
V. L.
,
1996
, “
Diagnosticity and Multidimensional Subjective Workload Ratings
,”
Ergonomics
,
39
(
3
), pp.
358
381
.
96.
Campbell
,
D. T.
, and
Fiske
,
D. W.
,
1959
, “
Convergent and Discriminant Validation by the Multitrait-Multimethod Matrix
,”
Psychol. Bull.
,
56
(
2
), p.
81
97.
Lopez
,
R.
,
Linsey
,
J. S.
, and
Smith
,
S. M.
,
2011
, “
Characterizing the Effect of Domain Distance in Design-by-Analogy
,”
ASME
Paper No.
DETC2011-48428.
98.
Novak
,
S.
, and
Eppinger
,
S. D.
,
2001
, “
Sourcing by Design: Product Complexity and the Supply Chain
,”
Manage. Sci.
,
47
(
1
), pp.
189
204
.
99.
Besemer
,
S. P.
,
1998
, “
Creative Product Analysis Matrix: Testing the Model Structure and a Comparison Among Products–Three Novel Chairs
,”
Creativity Res. J.
,
11
(
4
), pp.
333
346
.
100.
Besemer
,
S. P.
, and
O'Quin
,
K.
,
1999
, “
Confirming the Three-Factor Creative Product Analysis Matrix Model in an American Sample
,”
Creativity Res. J.
,
12
(
4
), pp.
287
296
.
101.
Silvia
,
P. J.
,
2011
, “
Subjective Scoring of Divergent Thinking: Examining the Reliability of Unusual Uses, Instances, and Consequences Tasks
,”
Thinking Skills Creativity
,
6
(
1
), pp.
24
30
.
102.
Rubio
,
S.
,
Díaz
,
E.
,
Martín
,
J.
, and
Puente
,
J. M.
,
2004
, “
Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA‐TLX, and Workload Profile Methods
,”
Appl. Psychol.
,
53
(
1
), pp.
61
86
.
You do not currently have access to this content.