This paper presents a simple and effective heuristic for topology optimization of a truss under the constraint that all the members of the truss have the common cross-sectional area. The proposed method consists of multiple restarts of the alternating direction method of multipliers (ADMM) with random initial points. It is shown that each iteration of the ADMM can be carried out very easily. In the numerical experiments, the efficiency of the proposed heuristic is compared with the existing global optimization method based on the mixed-integer second-order cone programming (MISOCP). It is shown that even for large-scale problem instances that the global optimization method cannot solve within practically acceptable computational cost, the proposed method can often find a feasible solution having a fairly good objective value within moderate computational time.

References

References
1.
Kanno
,
Y.
,
2016
, “
Global Optimization of Trusses With Constraints on Number of Different Cross-Sections: A Mixed-Integer Second-Order Cone Programming Approach
,”
Comput. Optim. Appl.
,
63
(
1
), pp.
203
236
.
2.
Boyd
,
S.
,
Parikh
,
N.
,
Chu
,
E.
,
Peleato
,
B.
, and
Eckstein
,
J.
,
2010
, “
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
,”
Foundations Trends Mach. Learn.
,
3
(
1
), pp.
1
122
.
3.
Jung
,
Y.
,
Kang
,
N.
, and
Lee
,
I.
,
2018
, “
Modified Augmented Lagrangian Coordination and Alternating Direction Method of Multipliers With Parallelization in Non-Hierarchical Analytical Target Cascading
,”
Struct. Multidiscip. Optim.
,
58
(2), pp. 555–573.
4.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
,
2006
, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
176
189
.
5.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2007
, “
An Augmented Lagrangian Decomposition Method for Quasi-Separable Problems in MDO
,”
Struct. Multidiscip. Optim.
,
34
(
3
), pp.
211
227
.
6.
Xu
,
M.
,
Fadel
,
G.
, and
Wiecek
,
M. M.
,
2017
, “
Improving the Performance of the Augmented Lagrangian Coordination: Decomposition Variants and Dual Residuals
,”
ASME J. Mech. Des.
,
139
(
3
), p. 031401.
7.
Ames
,
B. P. W.
, and
Hong
,
M.
,
2016
, “
Alternating Direction Method of Multipliers for Penalized Zero-Variance Discriminant Analysis
,”
Comput. Optim. Appl.
,
64
(
3
), pp.
725
754
.
8.
Diamond
,
S.
,
Takapoui
,
R.
, and
Boyd
,
S.
,
2018
, “
A General System for Heuristic Minimization of Convex Functions Over Non-Convex Sets
,”
Optim. Methods Software
,
33
(
1
), pp.
165
193
.
9.
Takapoui
,
R.
,
Moehle
,
N.
,
Boyd
,
S.
, and
Bemporad
,
A.
,
2017
, “
A Simple Effective Heuristic for Embedded Mixed-Integer Quadratic Programming
,”
Int. J. Control
(epub).
10.
Chartrand
,
R.
,
2012
, “
Nonconvex Splitting for Regularized Low-Rank + Sparse Decomposition
,”
IEEE Trans. Signal Process.
,
60
(
11
), pp.
5810
5819
.
11.
Chartrand
,
R.
, and
Wohlberg
,
B.
,
2013
, “
A Nonconvex ADMM Algorithm for Group Sparsity With Sparse Groups
,”
IEEE
International Conference on Acoustics, Speech and Signal Processing
, Vancouver, BC, Canada, May 26–31, pp.
6009
6013
.
12.
Kanamori
,
T.
, and
Takeda
,
A.
,
2014
, “
Numerical Study of Learning Algorithms on Stiefel Manifold
,”
Comput. Manage. Sci.
,
11
(
4
), pp.
319
340
.
13.
Kanno
,
Y.
, and
Fujita
,
S.
,
2018
, “
Alternating Direction Method of Multipliers for Truss Topology Optimization With Limited Number of Nodes: A Cardinality-Constrained Second-Order Cone Programming Approach
,”
Optim. Eng.
,
19
(
2
), pp.
327
358
.
14.
Kanno
,
Y.
, and
Kitayama
,
S.
,
2018
, “
Alternating Direction Method of Multipliers as a Simple Effective Heuristic for Mixed-Integer Nonlinear Optimization
,”
Struct. Multidiscip. Optim.
,
58
(3), pp. 1291–1295.
15.
M. F.
Anjos
, and
J. B.
Lasserre
, eds.,
2012
,
Handbook on Semidefinite, Conic and Polynomial Optimization
,
Springer
,
New York
.
16.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
,
2001
,
Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications
,
SIAM
,
Philadelphia, PA
.
17.
Kanno
,
Y.
, and
Yamada
,
H.
,
2017
, “
A Note on Truss Topology Optimization under Self-Weight Load: Mixed-Integer Second-Order Cone Programming Approach
,”
Struct. Multidiscip. Optim.
,
56
(
1
), pp.
221
226
.
18.
Kanno
,
Y.
,
2016
, “
Mixed-Integer Second-Order Cone Programming for Global Optimization of Compliance of Frame Structure With Discrete Design Variables
,”
Struct. Multidiscip. Optim.
,
54
(
2
), pp.
301
316
.
19.
Kanno
,
Y.
,
2013
, “
Damper Placement Optimization in a Shear Building Model With Discrete Design Variables: A Mixed-Integer Second-Order Cone Programming Approach
,”
Earthquake Eng. Struct. Dyn.
,
42
(
11
), pp.
1657
1676
.
20.
Kanno
,
Y.
, and
Guo
,
X.
,
2010
, “
A Mixed Integer Programming for Robust Truss Topology Optimization With Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
83
(
13
), pp.
1675
1699
.
21.
Mela
,
K.
,
2014
, “
Resolving Issues With Member Buckling in Truss Topology Optimization Using a Mixed Variable Approach
,”
Struct. Multidiscip. Optim.
,
50
(
6
), pp.
1037
1049
.
22.
Rasmussen
,
M. H.
, and
Stolpe
,
M.
,
2008
, “
Global Optimization of Discrete Truss Topology Design Problems Using a Parallel Cut-and-Branch Method
,”
Comput. Struct.
,
86
(
13–14
), pp.
1527
1538
.
23.
Stolpe
,
M.
,
2007
, “
On the Reformulation of Topology Optimization Problems as Linear or Convex Quadratic Mixed 0-1 Programs
,”
Optim. Eng.
,
8
(
2
), pp.
163
192
.
24.
Hirota
,
M.
, and
Kanno
,
Y.
,
2015
, “
Optimal Design of Periodic Frame Structures With Negative Thermal Expansion via Mixed Integer Programming
,”
Optim. Eng.
,
16
(
4
), pp.
767
809
.
25.
Kureta
,
R.
, and
Kanno
,
Y.
,
2014
, “
A Mixed Integer Programming Approach to Designing Periodic Frame Structures With Negative Poisson's Ratio
,”
Optim. Eng.
,
15
(
3
), pp.
773
800
.
26.
Van Mellaert
,
R.
,
Mela
,
K.
,
Tiainen
,
T.
,
Heinisuo
,
M.
,
Lombaert
,
G.
, and
Schevenels
,
M.
,
2018
, “
Mixed-Integer Linear Programming Approach for Global Discrete Sizing Optimization of Frame Structures
,”
Struct. Multidiscip. Optim.
,
57
(
2
), pp.
579
593
.
27.
Stolpe
,
M.
, and
Stidsen
,
T.
,
2007
, “
A Hierarchical Method for Discrete Structural Topology Design Problems With Local Stress and Displacement Constraints
,”
Int. J. Numer. Methods Eng.
,
69
(
5
), pp.
1060
1084
.
28.
Stolpe
,
M.
, and
Svanberg
,
K.
,
2003
, “
Modelling Topology Optimization Problems as Linear Mixed 0-1 Programs
,”
Int. J. Numer. Methods Eng.
,
57
(
5
), pp.
723
739
.
29.
Svanberg
,
K.
, and
Werme
,
M.
,
2007
, “
Sequential Integer Programming Methods for Stress Constrained Topology Optimization
,”
Struct. Multidiscip. Optim.
,
34
(
4
), pp.
277
299
.
30.
Ehara
,
S.
, and
Kanno
,
Y.
,
2010
, “
Topology Design of Tensegrity Structures via Mixed Integer Programming
,”
Int. J. Solids Struct.
,
47
(
5
), pp.
571
579
.
31.
Kanno
,
Y.
,
2012
, “
Topology Optimization of Tensegrity Structures Under Self-Weight Loads
,”
J. Oper. Res. Soc. Jpn.
,
55
(
2
), pp.
125
145
.
32.
Kanno
,
Y.
,
2013
, “
Topology Optimization of Tensegrity Structures Under Compliance Constraint: A Mixed Integer Linear Programming Approach
,”
Optim. Eng.
,
14
(
1
), pp.
61
96
.
33.
Kanno
,
Y.
,
2013
, “
Exploring New Tensegrity Structures via Mixed Integer Programming
,”
Struct. Multidiscip. Optim.
,
48
(
1
), pp.
95
114
.
34.
Pandian
,
N. K. R.
, and
Ananthasuresh
,
G. K.
,
2017
, “
Synthesis of Tensegrity Structures of Desired Shape Using Constrained Minimization
,”
Struct. Multidiscip. Optim.
,
56
(
6
), pp.
1233
1245
.
35.
Pietroni
,
N.
,
Tarini
,
M.
,
Vaxman
,
A.
,
Panozzo
,
D.
, and
Cignoni
,
P.
,
2017
, “
Position-Based Tensegrity Design
,”
ACM Trans. Graph.
,
36
(
6
), p.
172
.
36.
Xu
,
X.
,
Wang
,
Y.
, and
Luo
,
Y.
,
2016
, “
General Approach for Topology-Finding of Tensegrity Structures
,”
ASCE J. Struct. Eng.
,
142
(
10
), p.
04016061
.
37.
Quan
,
N.
, and
Kim
,
H. M.
,
2016
, “
A Mixed Integer Linear Programming Formulation for Unrestricted Wind Farm Layout Optimization
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061404
.
38.
Turner
,
S. D. O.
,
Romero
,
D. A.
,
Zhang
,
P. Y.
,
Amon
,
C. H.
, and
Chan
,
T. C. Y.
,
2014
, “
A New Mathematical Programming Approach to Optimize Wind Farm Layouts
,”
Renewable Energy
,
63
, pp.
674
680
.
39.
Stolpe
,
M.
,
2016
, “
Truss Optimization With Discrete Design Variables: A Critical Review
,”
Struct. Multidiscip. Optim.
,
53
(
2
), pp.
349
374
.
40.
Demeulenaere
,
B.
,
Aertbeliën
,
E.
,
Verschuure
,
M.
,
Swevers
,
J.
, and
De Schutter
,
J.
,
2006
, “
Ultimate Limits for Counterweight Balancing of Crank-Rocker Four-Bar Linkages
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1272
1234
.
41.
Demeulenaere
,
B.
,
Verschuure
,
M.
,
Swevers
,
J.
, and
De Schutter
,
J.
,
2010
, “
A General and Numerically Efficient Framework to Design Sector-Type and Cylindrical Counterweights for Balancing of Planar Linkages
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011002
.
42.
Verschuure
,
M.
,
Demeulenaere
,
B.
,
Swevers
,
J.
, and
Schutter
,
J. D.
,
2008
, “
Counterweight Balancing for Vibration Reduction of Elastically Mounted Machine Frames: A Second-Order Cone Programming Approach
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022302
.
43.
Meng
,
J.
,
Zhang
,
D.
, and
Li
,
Z.
,
2009
, “
Accuracy Analysis of Parallel Manipulators With Joint Clearance
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011013
.
44.
Asadpoure
,
A.
,
Guest
,
J. K.
, and
Valdevit
,
L.
,
2015
, “
Incorporating Fabrication Cost into Topology Optimization of Discrete Structures and Lattices
,”
Struct. Multidiscip. Optim.
,
51
(
2
), pp.
385
396
.
45.
Torii
,
A. J.
,
Lopez
,
R. H.
, and
F. Miguel
,
L. F.
,
2016
, “
Design Complexity Control in Truss Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
2
), pp.
289
299
.
46.
Lavan
,
O.
, and
Amir
,
O.
,
2014
, “
Simultaneous Topology and Sizing Optimization of Viscous Dampers in Seismic Retrofitting of 3D Irregular Frame Structures
,”
Earthquake Eng. Struct. Dyn.
,
43
(
9
), pp.
1325
1342
.
47.
Barbosa
,
H. J. C.
,
Lemonge
,
A. C. C.
, and
Borges
,
C. C. H.
,
2008
, “
A Genetic Algorithm Encoding for Cardinality Constraints and Automatic Variable Linking in Structural Optimization
,”
Eng. Struct.
,
30
(
12
), pp.
3708
3723
.
48.
Carvalho
,
J. P. G.
,
Lemonge
,
A. C. C.
,
Carvalho
,
É. C. R.
,
Hallak
,
P. H.
, and
Bernardino
,
H. S.
,
2018
, “
Truss Optimization With Multiple Frequency Constraints and Automatic Member Grouping
,”
Struct. Multidiscip. Optim.
,
57
(
2
), pp.
547
577
.
49.
Galante
,
M.
,
1996
, “
Genetic Algorithms as an Approach to Optimize Real-World Trusses
,”
Int. J. Numer. Methods Eng.
,
39
(
3
), pp.
361
382
.
50.
Shea
,
K.
,
Cagan
,
J.
, and
Fenves
,
S. J.
,
1997
, “
A Shape Annealing Approach to Optimal Truss Design With Dynamic Grouping of Members
,”
ASME J. Mech. Des.
,
119
(
3
), pp.
388
394
.
51.
Toğan
,
V.
, and
Daloğlu
,
A. T.
,
2006
, “
Optimization of 3D Trusses With Adaptive Approach in Genetic Algorithms
,”
Eng. Struct.
,
28
(
7
), pp.
1019
1027
.
52.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
53.
Benson
,
H. Y.
, and
Sa
,
Ü.
,
2013
, “
Ğlan: Mixed-Integer Second-Order Cone Programming: A Survey
,”
INFORMS Tutorials in Operations Research: Theory Driven by Influential Applications
,
H.
Topaloglu
, ed.,
INFORMS
, Catonsville, pp.
13
36
.
54.
Kočvara
,
M.
,
2017
, “
Truss Topology Design by Linear Conic Optimization
,”
Advances and Trends in Optimization With Engineering Applications
,
T.
Terlaky
,
M. F.
Anjos
, and
S.
Ahmed
, eds.,
SIAM
,
Philadelphia, PA
, pp.
149
160
.
55.
Makrodimopoulos
,
A.
,
Bhaskar
,
A.
, and
Keane
,
A. J.
,
2010
, “
Second-Order Cone Programming Formulations for a Class of Problems in Structural Optimization
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
365
380
.
56.
Grant
,
M.
, and
Boyd
,
S.
,
2008
, “
Graph Implementations for Nonsmooth Convex Programs
,”
Recent Advances in Learning and Control (a Tribute to M. Vidyasagar)
,
V.
Blondel
,
S.
Boyd
, and
H.
Kimura
, eds.,
Springer-Verlag, London
, pp.
95
110
.
57.
Grant
,
M.
, and
Boyd
,
S.
,
2018
, “
CVX: Matlab Software for Disciplined Convex Programming, Ver. 2.1
,” CVX Research Inc., San Mateo, CA, accessed Aug. 29, 2018 http://cvxr.com/cvx/
58.
Tütüncü
,
R. H.
,
Toh
,
K. C.
, and
Todd
,
M. J.
,
2003
, “
Solving Semidefinite-Quadratic-Linear Programs Using SDPT3
,”
Math. Program.
,
B95
(
2
), pp.
189
217
.
59.
Guo
,
X.
,
Bai
,
W.
, and
Zhang
,
W.
,
2008
, “
Extreme Structural Response Analysis of Truss Structures Under Material Uncertainty Via Linear Mixed 0-1 Programming
,”
Int. J. Numer. Methods Eng.
,
76
(
3
), pp.
253
277
.
60.
Guo
,
X.
,
Bai
,
W.
,
Zhang
,
W.
, and
Gao
,
X.
,
2009
, “
Confidence Structural Robust Design and Optimization Under Stiffness and Load Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
41–44
), pp.
3378
3399
.
61.
Kanno
,
Y.
, and
Takewaki
,
I.
,
2006
, “
Confidence Ellipsoids for Static Response of Trusses With Load and Structural Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
1–3
), pp.
393
403
.
You do not currently have access to this content.