Rigid-body discretization of continuum elements was developed as a method for simplifying the kinematics of otherwise complex systems. Recent work on pseudo-rigid-body (PRB) models for compliant mechanisms has opened up the possibility of using similar concepts for synthesis and design, while incorporating various types of flexible elements within the same framework. In this paper, an idea for combining initially curved and straight beams within planar compliant mechanisms is developed to create a set of equations that can be used to analyze various designs and topologies. A PRB model with three revolute joints is derived to approximate the behavior of initially curved compliant beams, while treating straight beams as a special case (zero curvature). The optimized model parameter values are tabled for a range of arc angles. The general kinematic and static equations for a single-loop mechanism are shown, with an example to illustrate accuracy for shape and displacement . Finally, this framework is used for the design of a compliant constant force mechanism to illustrate its application, and comparisons with finite element analysis (FEA) are provided for validation.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
New York
.
3.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.
4.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
5.
Kim
,
C. J.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2008
, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022308
.
6.
Su
,
H.-J.
,
Dorozhkin
,
D.
, and
Vance
,
J.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
.
7.
Su
,
H.-J.
,
2011
, “
Mobility Analysis of Flexure Mechanisms Via Screw Algebra
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041010
.
8.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2006
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
9.
Ma
,
F.
, and
Chen
,
G.
,
2015
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
10.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
11.
Kota
,
S.
,
Joo
,
J.
,
Li
,
Z.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integr. Circuits Signal Process.
,
29
(
1/2
), pp.
7
15
.
12.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
13.
Dado
,
M. H.
,
2001
, “
Variable Parametric Pseudo-Rigid-Body Model for Large-Deflection Beams With End Loads
,”
Int. J. Non-Linear Mech.
,
36
(
7
), pp.
1123
1133
.
14.
Saxena
,
A.
, and
Kramer
,
S. N.
,
1998
, “
A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
392
400
.
15.
Kimball
,
C.
, and
Tsai
,
L.-W.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
223
235
.
16.
Edwards
,
B. T.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
1999
, “
A Pseudo-Rigid-Body Model for Initially-Curved Pinned-Pinned Segments Used in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
464
468
.
17.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
Pseudo-Rigid-Body Models for Circular Beams Under Combined Tip Loads
,”
Mech. Mach. Theory
,
106
, pp.
80
93
.
18.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
, and
Bi
,
S.
,
2010
, “
An Effective Pseudo-Rigid-Body Method for Beam-Based Compliant Mechanisms
,”
Precis. Eng.
,
34
(
3
), pp.
634
639
.
19.
Su
,
H.-J.
,
2009
, “
A Pseudorigid-Body 3r Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
20.
Yu
,
Y.-Q.
,
Feng
,
Z.-L.
, and
Xu
,
Q.-P.
,
2012
, “
A Pseudo-Rigid-Body 2r Model of Flexural Beam in Compliant Mechanisms
,”
Mech. Mach. Theory
,
55
, pp.
18
33
.
21.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
A Three-Spring Pseudorigid-Body Model for Soft Joints With Significant Elongation Effects
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061001
.
22.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
Extension Effects in Compliant Joints and Pseudo-Rigid-Body Models
,”
ASME J. Mech. Des.
,
138
(
9
), p.
092302
.
23.
Venkiteswaran
,
V. K.
,
Turkkan
,
O. A.
, and
Su
,
H.-J.
,
2017
, “
Speeding Up Topology Optimization of Compliant Mechanisms With Pseudo-Rigid-Body Models
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041007
.
24.
Lu
,
K.-J.
, and
Kota
,
S.
,
2005
, “
An Effective Method of Synthesizing Compliant Adaptive Structures Using Load Path Representation
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
307
317
.
25.
Roach
,
G. M.
, and
Howell
,
L. L.
,
2002
, “
Evaluation and Comparison of Alternative Compliant Overrunning Clutch Designs
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
485
491
.
26.
Qiu
,
J.
,
Lang
,
J.
, and
Slocum
,
A.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
27.
Wang
,
N.
,
Liang
,
X.
, and
Zhang
,
X.
,
2014
, “
Pseudo-Rigid-Body Model for Corrugated Cantilever Beam Used in Compliant Mechanisms
,”
Chin. J. Mech. Eng.
,
27
(
1
), pp.
122
129
.
28.
Midha
,
A.
,
Kuber
,
R. S.
, and
Bapat
,
S. G.
,
2015
, “
Development of a Methodology for Pseudo-Rigid-Body Models of Compliant Beams With Inserts, and Experimental Validation
,”
ASME. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
(Volume 5A: 39th Mechanisms and Robotics Conference), Boston, MA, Aug 2–5.
29.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2015
, “
A Parameter Optimization Framework for Determining the Pseudo-Rigid-Body Model of Cantilever-Beams
,”
Precis. Eng.
,
40
, pp.
46
54
.
30.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Pearson Education
,
Incorporated, London
.
31.
Turkkan
,
O. A.
, and
Su
,
H.-J.
,
2016
, “
DAS-2d: A Concept Design Tool for Compliant Mechanisms
,”
Mech. Sci.
,
7
(
2
), pp.
135
148
.
32.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
,
2003
, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1469
1487
.
33.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.
You do not currently have access to this content.