Rehabilitation robots are increasingly being developed in order to be used by injured people to perform exercise and training. As these exercises do not need wide range movements, some parallel robots with lower mobility architecture can be an ideal solution for this purpose. This paper presents the design of a new four degree-of-freedom (DOF) parallel robot for knee rehabilitation. The required four DOFs are two translations in a vertical plane and two rotations, one of them around an axis perpendicular to the vertical plane and the other one with respect to a vector normal to the instantaneous orientation of the mobile platform. These four DOFs are reached by means of two RPRR limbs and two UPS limbs linked to an articulated mobile platform with an internal DOF. Kinematics of the new mechanism are solved and the direct Jacobian is calculated. A singularity analysis is carried out and the gained DOFs of the direct singularities are calculated. Some of the singularities can be avoided by selecting suitable values of the geometric parameters of the robot. Moreover, among the found singularities, one of them can be used in order to fold up the mechanism for its transportation. It is concluded that the proposed mechanism reaches the desired output movements in order to carry out rehabilitation maneuvers in a singularity-free portion of its workspace.

References

References
1.
Merlet
,
J.
,
2006
,
Parallel Robots
,
Springer
,
Dordrecht, The Netherlands
.
2.
Neumann
,
K.-E.
,
1988
, “
Robot
,” Parallel Kinematics Machines SL, U.S. Patent No.
4732525A
.https://patents.google.com/patent/US4732525A/en
3.
Zhang
,
D.
,
Bi
,
Z.
, and
Li
,
B.
,
2009
, “
Design and Kinetostatic Analysis of a New Parallel Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
25
(
4–5
), pp.
782
791
.
4.
Chablat
,
D.
, and
Wenger
,
P.
,
2003
, “
Architecture Optimization of a 3-DOF Translational Parallel Mechanism for Machining Applications, the Orthoglide
,”
IEEE Trans. Rob. Autom.
,
19
(
3
), pp.
403
410
.
5.
Clavel
,
R.
,
1990
, “
Device for the Movement and Positioning of an Element in Space
,” U.S. Patent No.
4976582A
.https://patents.google.com/patent/US4976582A/en
6.
Salgado
,
O.
,
Altuzarra
,
O.
,
Petuya
,
V.
, and
Hernández
,
A.
,
2008
, “
Synthesis and Design of a Novel 3T1R Fully-Parallel Manipulator
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042305
.
7.
Briot
,
S.
, and
Bonev
,
I. A.
,
2009
, “
Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021001
.
8.
Company
,
O.
,
Pierrot
,
F.
,
Krut
,
S.
,
Baradat
,
C.
, and
Nabat
,
V.
,
2011
, “
Par2: A Spatial Mechanism for Fast Planar Two-Degree-of-Freedom Pick-and-Place Applications
,”
Meccanica
,
46
(
1
), pp.
239
248
.
9.
Xie
,
F.
, and
Liu
,
X.-J.
,
2015
, “
Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041015
.
10.
Kuo
,
C.-H.
, and
Dai
,
J. S.
,
2012
, “
Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
6
(
2
), p.
021008
.
11.
Bi
,
Z. M.
,
2013
, “
Design of a Spherical Parallel Kinematic Machine for Ankle Rehabilitation
,”
Adv. Rob.
,
27
(
2
), pp.
121
132
.
12.
Chaker
,
A.
,
Mlika
,
A.
,
Laribi
,
M. A.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2012
, “
Synthesis of Spherical Parallel Manipulator for Dexterous Medical Task
,”
Front. Mech. Eng.
,
7
(
2
), pp.
150
162
.
13.
Plitea
,
N.
,
Szilaghyi
,
A.
, and
Pisla
,
D.
,
2015
, “
Kinematic Analysis of a New 5-DOF Modular Parallel Robot for Brachytherapy
,”
Rob. Comput. Integr. Manuf.
,
31
, pp.
70
80
.
14.
Jamwal
,
P. K.
,
Hussain
,
S.
, and
Xie
,
S. Q.
,
2015
, “
Review on Design and Control Aspects of Ankle Rehabilitation Robots
,”
Disability Rehabilitation: Assistive Technol.
,
10
(
2
), pp.
93
101
.
15.
Rastegarpanah
,
A.
,
Saadat
,
M.
, and
Borboni
,
A.
,
2016
, “
Parallel Robot for Lower Limb Rehabilitation Exercises
,”
Appl. Bionics Biomech.
,
2016
, p. 8584735.
16.
Wiertsema
,
S.
,
van Hooff
,
H.
,
Migchelsen
,
L.
, and
Steultjens
,
M.
,
2008
, “
Reliability of the KT1000 Arthrometer and the Lachman Test in Patients With an ACL Rupture
,”
Knee
,
15
(
2
), pp.
107
110
.
17.
Lopomo
,
N.
,
Zaffagnini
,
S.
,
Signorelli
,
C.
,
Bignozzi
,
S.
,
Giordano
,
G.
,
Muccioli
,
G. M. M.
, and
Visani
,
A.
,
2012
, “
An Original Clinical Methodology for Non-Invasive Assessment of Pivot-Shift Test
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
12
), pp.
1323
1328
.
18.
Andriacchi
,
T. P.
,
Natarajan
,
R.
, and
Hurwitz
,
D.
,
1997
, “
Musculoskeletal Dynamics: Locomotion and Clinical Applications
,”
Basic Orthopaedic Biomechanics & Mechanobiology
, Vol.
2
, Lippincott Willians & Wikins, Philadelphia, PA, pp.
37
68
.
19.
Chen
,
W.
, and
Zhao
,
M.
,
2001
, “
A Novel 4-DOF Parallel Manipulator and Its Kinematic Modelling
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
3350
3355
.
20.
Fan
,
C.
,
Liu
,
H.
, and
Zhang
,
Y.
,
2013
, “
Type Synthesis of 2T2R, 1T2R and 2R Parallel Mechanisms
,”
Mech. Mach. Theory
,
61
, pp.
184
190
.
21.
Ghaffari
,
H.
,
Payeganeh
,
G.
, and
Arbabtafti
,
M.
,
2014
, “
Kinematic Design of a Novel 4-DOF Parallel Mechanism for Turbine Blade Machining
,”
Int. J. Adv. Manuf. Technol.
,
74
(
5–8
), pp.
729
739
.
22.
Altuzarra
,
O.
,
Macho
,
E.
,
Aginaga
,
J.
, and
Petuya
,
V.
,
2015
, “
Design of a Solar Tracking Parallel Mechanism With Low Energy Consumption
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
3
), pp.
566
579
.
23.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
,
Umer
,
R.
, and
Seneviratne
,
L.
,
2015
, “
Singularity-Free Workspace Aimed Optimal Design of a 2T2R Parallel Mechanism for Automated Fiber Placement
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041022
.
24.
Kumar
,
N.
,
Piccin
,
O.
, and
Bayle
,
B.
,
2014
, “
A Task-Based Type Synthesis of Novel 2T2R Parallel Mechanisms
,”
Mech. Mach. Theory
,
77
, pp.
59
72
.
25.
Mohan
,
S.
,
Mohanta
,
J.
,
Kurtenbach
,
S.
,
Paris
,
J.
,
Corves
,
B.
, and
Huesing
,
M.
,
2017
, “
Design, Development and Control of a 2PRP-2PPR Planar Parallel Manipulator for Lower Limb Rehabilitation Therapies
,”
Mech. Mach. Theory
,
112
, pp.
272
294
.
26.
Ding
,
H.
,
ao Cao
,
W.
,
Chen
,
Z.
, and
Kecskeméthy
,
A.
,
2015
, “
Structural Synthesis of Two-Layer and Two-Loop Spatial Mechanisms With Coupling Chains
,”
Mech. Mach. Theory
,
92
, pp.
289
313
.
27.
Wang
,
C.
,
Fang
,
Y.
, and
Fang
,
H.
,
2017
, “
Novel 2R3T and 2R2T Parallel Mechanisms With High Rotational Capability
,”
Robotica
,
35
(
2
), pp.
401
418
.
28.
Araujo-Gómez
,
P.
,
Díaz-Rodríguez
,
M.
,
Mata
,
V.
,
Valera
,
A.
, and
Page
,
A.
,
2016
, “
Design of a 3-UPS-RPU Parallel Robot for Knee Diagnosis and Rehabilitation
,”
ROMANSY 21—Robot Design, Dynamics and Control
, Vol.
569
,
CISM International Centre for Mechanical Sciences
, Udine, Italy, pp.
303
310
.
29.
Araujo-Gómez
,
P.
,
Mata
,
V.
,
Díaz-Rodríguez
,
M.
,
Valera
,
A.
, and
Page
,
A.
,
2017
, “
Design and Kinematic Analysis of a Novel 3 UPS/RPU Parallel Kinematic Mechanism With 2T2R Motion for Knee Diagnosis and Rehabilitation Tasks
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061004
.
30.
Nabat
,
V.
,
de la
,
O.
,
Rodríguez
,
M.
,
Company
,
O.
Krut
,
S.
, and
Pierrot
,
V.
,
2005
, “
Par4: Very High Speed Parallel Robot for Pick-and-Place
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Edmonton, AB, Canada, Aug. 2–6, pp.
553
558
.
31.
Lambert
,
P.
, and
Herder
,
J. L.
,
2015
, “
A Novel Parallel Haptic Device With 7 Degrees of Freedom
,”
IEEE World Haptics Conference
(
WHC
), Evanston, IL, June 22–26, pp.
183
188
.
32.
Hoevenaars
,
A.
,
Gosselin
,
C.
,
Lambert
,
P.
, and
Herder
,
J.
,
2017
, “
A Systematic Approach for the Jacobian Analysis of Parallel Manipulators With Two End-Effectors
,”
Mech. Mach. Theory
,
109
, pp.
171
194
.
33.
Song
,
Y.
,
Qi
,
Y.
, and
Sun
,
T.
,
2016
, “
Conceptual Design and Kinematic Analysis of a Novel Parallel Manipulator With an Articulated Gripping Platform
,”
Advances in Reconfigurable Mechanisms and Robots II
(Mechanism and Machine),
X.
Ding
,
X.
Kong
, and
J.
Dai
, eds., Vol.
36
,
Springer International Publishing
, Beijing, China, pp.
433
444
.
34.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
35.
Wang
,
J.
, and
Gosselin
,
C. M.
,
2004
, “
Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
109
118
.
36.
Isaksson
,
M.
,
2017
, “
Kinematically Redundant Planar Parallel Mechanisms for Optimal Singularity Avoidance
,”
ASME J. Mech. Des.
,
139
(
4
), p.
042302
.
37.
Aginaga
,
J.
,
Zabalza
,
I.
,
Altuzarra
,
O.
, and
Nájera
,
J.
,
2012
, “
Improving Static Stiffness of the 6-RUS Parallel Manipulator Using Inverse Singularities
,”
Rob. Comput.-Integr. Manuf.
,
28
(
4
), pp.
458
471
.
38.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Architecture Singularities of Platform Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Sacramento, CA, Apr. 9–11, pp.
1542
1547
.
39.
Joshi
,
S. A.
, and
Tsai
,
L.-W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
40.
St-Onge
,
B. M.
, and
Gosselin
,
C. M.
,
2000
, “
Singularity Analysis and Representation of the General Gough-Stewart Platform
,”
Int. J. Rob. Res.
,
19
(
3
), pp.
271
288
.
41.
Merlet
,
J. P.
,
1999
, “
Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison Between Different Geometries
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
902
916
.
42.
Bonev
,
I. A.
, and
Ryu
,
J.
,
2001
, “
A Geometrical Method for Computing the Constant-Orientation Workspace of 6-PRRS Parallel Manipulators
,”
Mech. Mach. Theory
,
36
(
1
), pp.
1
13
.
43.
Bonev
,
I. A.
, and
Ryu
,
J.
,
2001
, “
A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators
,”
Mech. Mach. Theory
,
36
(
1
), pp.
15
28
.
You do not currently have access to this content.