This paper presents the parametrically excited lateral instabilities of an asymmetrical spherical parallel manipulator (SPM) by means of monodromy matrix method. The linearized equation of motion for the lateral vibrations is developed to analyze the stability problem, resorting to the Floquet theory, which is numerically illustrated. To this end, the parametrically excited unstable regions of the manipulator are visualized to reveal the effect of the system parameters on the stability. Critical parameters, such as rotating speeds of the driving shaft, are identified from the constructed parametric stability chart for the manipulator.

References

References
1.
Asada
,
H.
, and
Granito
,
J.
,
1985
, “
Kinematic and Static Characterization of Wrist Joints and Their Optimal Design
,”
IEEE International Conference on Robotics Automation
(
ICRA
), St. Louis, MO, Mar. 25–28, pp.
244
250
.
2.
Gosselin
,
C.
, and
Hamel
,
J.
,
1994
, “
The Agile Eye: A High-Performance Three-Degree-of-Freedom Camera-Orienting Device
,”
IEEE International Conference Robotics Automation
(
ICRA
), San Diego, CA, May 8–13, pp.
781
786
.
3.
Li
,
T.
, and
Payandeh
,
S.
,
2002
, “
Design of Spherical Parallel Mechanisms for Application to Laparoscopic Surgery
,”
Robotica
,
20
(
2
), pp.
133
138
.
4.
Bonev
,
I.
, and
Gosselin
,
C.
,
2006
, “
Analytical Determination of the Workspace of Symmetrical Spherical Parallel Mechanisms
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
1011
1017
.
5.
Bidault
,
F.
,
Teng
,
C.-P.
, and
Angeles
,
J.
,
2001
, “
Structural Optimization of a Spherical Parallel Manipulator Using a Two-Level Approach
,”
ASME
Paper No. DETC2001/DAC-21030.
6.
Bai
,
S.
,
2010
, “
Optimum Design of Spherical Parallel Manipulator for a Prescribed Workspace
,”
Mech. Mach. Theory
,
45
(
2
), pp.
200
211
.
7.
Wu
,
G.
,
Caro
,
S.
,
Bai
,
S.
, and
Kepler
,
J.
,
2014
, “
Dynamic Modeling and Design Optimization of a 3-DOF Spherical Parallel Manipulator
,”
Rob. Autom. Syst.
,
62
(
10
), pp.
1377
1386
.
8.
Karouia
,
M.
, and
Hervé
,
J.
,
2000
, “
A Three-Dof Tripod for Generating Spherical Rotation
,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
M.
Stanišič
, eds.,
Springer
,
Netherlands
, pp.
395
402
.
9.
Kong
,
K.
, and
Gosselin
,
C.
,
2004
, “
Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
237
245
.
10.
Urízar
,
M.
,
Petuya
,
V.
,
Altuzarra
,
O.
,
Diez
,
M.
, and
Hernández
,
A.
,
2015
, “
Non-Singular Transitions Based Design Methodology for Parallel Manipulators
,”
Mech. Mach. Theory
,
91
, pp.
168
186
.
11.
Wu
,
G.
,
Caro
,
S.
, and
Wang
,
J.
,
2015
, “
Design and Transmission Analysis of an Asymmetrical Spherical Parallel Manipulator
,”
Mech. Mach. Theory
,
94
, pp.
119
131
.
12.
Wu
,
G.
, and
Zou
,
P.
,
2016
, “
Comparison of 3-dof Asymmetrical Spherical Parallel Manipulators With Respect to Motion/Force Transmission and Stiffness
,”
Mech. Mach. Theory
,
105
, pp.
369
387
.
13.
Landuré
,
J.
, and
Gosselin
,
C.
,
2018
, “
Kinematic Analysis of a Novel Kinematically Redundant Spherical Parallel Manipulator
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021007
.
14.
Rosenberg
,
R. M.
,
1958
, “
On the Dynamical Behavior of Rotating Shafts Driven by Universal (Hooke) Couplings
,”
ASME J. Appl. Mech.
,
25
(
1
), pp.
47
51
.
15.
Porter
,
B.
,
1961
, “
A Theoretical Analysis of the Torsional Oscillation of a System Incorporating a Hooke's Joint
,”
Arch. J. Mech. Eng. Sci.
,
3
(
4
), pp.
324
329
.
16.
Floquet
,
G.
,
1883
, “
Sur Les Équations Différentielles Linéaires à Coefficients Périodiques
,”
Ann. De L'École Normale Supérieure
,
12
, pp.
47
88
.
17.
Kuchment
,
P. A.
,
1993
,
Floquet Theory for Partial Differential Equations
,
Birkhauser Verlag
, Basel, Switzerland.
18.
Éidinov
,
M. S.
,
Nyrko
,
V. A.
,
Éidinov
,
R. M.
, and
Gashukov
,
V. S.
,
1976
, “
Torsional Vibrations of a System With Hooke's Joint
,”
Sov. Appl. Mech
,
12
(
3
), pp.
291
298
.
19.
Asokanthan
,
S. F.
, and
Hwang
,
M. C.
,
1996
, “
Torsional Instabilities in a System Incorporating a Hooke's Joint
,”
ASME J. Vib. Acoust.
,
118
(
3
), pp.
83
91
.
20.
Chang
,
S. I.
,
2000
, “
Torsional Instabilities and Non-Linear Oscillation of a System Incorporating a Hooke's Joint
,”
J. Sound Vib.
,
229
(
4
), pp.
993
1002
.
21.
Bulut
,
G.
, and
Parlar
,
Z.
,
2011
, “
Dynamic Stability of a Shaft System Connected Through a Hooke's Joint
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1689
1695
.
22.
Bulut
,
G.
,
2014
, “
Dynamic Stability Analysis of Torsional Vibrations of a Shaft System Connected by a Hooke's Joint Through a Continuous System Model
,”
J. Sound Vib.
,
333
(
16
), pp.
3691
3701
.
23.
Ota
,
H.
,
Kato
,
M.
, and
Sugita
,
H.
,
1984
, “
Lateral Vibrations of a Rotating Shaft Driven by a Universal Joint–1st Report
,”
Bull. JSME
,
27
(
231
), pp.
2002
2007
.
24.
Ota
,
H.
,
Kato
,
M.
, and
Sugita
,
H.
,
1985
, “
Lateral Vibrations of a Rotating Shaft Driven by a Universal Joint–2nd Report
,”
Bull. JSME
,
28
(
242
), pp.
1749
1755
.
25.
Kato
,
M.
, and
Ota
,
H.
,
1990
, “
Lateral Excitation of a Rotating Shaft Driven by a Universal Joint With Friction
,”
ASME J. Vib. Acoust.
,
112
(
3
), pp.
298
303
.
26.
Sheu
,
P. P.
,
Chieng
,
W. H.
, and
Lee
,
A. C.
,
1996
, “
Modeling and Analysis of the Intermediate Shaft Between Two Universal Joints
,”
ASME J. Vib. Acoust.
,
118
(
1
), pp.
88
99
.
27.
Saigo
,
M.
,
Okada
,
Y.
, and
Ono
,
K.
,
1997
, “
Self-Excited Vibration Caused by Internal Friction in Universal Joints and Its Stabilizing Method
,”
ASME J. Vib. Acoust.
,
119
(
2
), pp.
221
229
.
28.
Mazzei
,
A. J.
, Jr.
,
Argento
,
A.
, and
Scott
,
R. A.
,
1999
, “
Dynamic Stability of a Rotating Shaft Driven Through a Universal Joint
,”
J. Sound Vib.
,
222
(
1
), pp.
19
47
.
29.
Mazzei
,
A. J.
, and
Scott
,
R. A.
,
2001
, “
Principal Parametric Resonance Zones of a Rotating Rigid Shaft Driven Through a Universal Joint
,”
J. Sound Vib.
,
244
(
3
), pp.
555
562
.
30.
Kang
,
Y.
,
Shen
,
Y.
,
Zhang
,
W.
, and
Yang
,
J.
,
2014
, “
Stability Region of Floating Intermediate Support in a Shaft System With Multiple Universal Joints
,”
J. Mech. Sci. Technol.
,
28
(
7
), pp.
2733
2742
.
31.
Soltan Rezaee
,
M.
,
Ghazavi
,
M.-R.
, and
Najafi
,
A.
,
2017
, “
Mathematical Modelling for Vibration Evaluation of Powertrain Systems
,”
Modelling, Simulation and Identification/854: Intelligent Systems and Control
, Calgary, AB, Canada, July 19–20, pp.
19
20
.
32.
Desmidt
,
H. A.
,
Smith
,
E. C.
, and
Wang
,
K. W.
,
2002
, “
Coupled Torsion-Lateral Stability of a Shaft-Disk System Driven Through a Universal Joint
,”
ASME J. Appl. Mech.
,
69
(
3
), pp.
261
273
.
33.
Pierrot
,
F.
,
Company
,
O.
,
Krut
,
S.
, and
Nabat
,
V.
,
2006
, “
Four-Dof PKM with Articulated Travelling-Plate
,”
Parallel Kinematics Seminar (PKS'06)
, Chemnitz, Germany, Apr. 25–26, pp.
25
26
.
34.
Porter
,
B.
, and
Gregory
,
R. W.
,
1963
, “
Non-Linear Torsional Oscillation of a System Incorporating a Hooke's Joint
,”
Arch. J. Mech. Eng. Sci.
,
5
(
2
), pp.
191
209
.
35.
Wu
,
G.
, and
Zou
,
P.
,
2017
, “
Stiffness Analysis and Comparison of a Biglide Parallel Grinder With Alternative Spatial Modular Parallelograms
,”
Robotica
,
35
(
6
), pp.
1310
1326
.
36.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.
37.
Shigley
,
J.
,
Mischke
,
C.
, and
Brown
,
T.
,
2004
,
Standard Handbook of Machine Design
,
McGraw-Hill
, New York.
38.
Nikravesh
,
P.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
39.
Jalón
,
J. G. D.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
,
Springer
,
New York
.
40.
Abramowitz
,
M.
,
Stegun
,
I. A.
, and
Romain
,
J. E.
,
1972
,
Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables
,
Dover Publications
, Mineola, NY.
41.
Teschl
,
G.
,
2012
,
Ordinary Differential Equations and Dynamical Systems
,
American Mathematical Society
,
Providence
, RI.
42.
Chicone
,
C.
,
2006
,
Ordinary Differential Equations With Applications
,
Springer
,
New York
.
43.
Szymkiewicz
,
R.
,
1971
,
Numerical Solution of Ordinary Differential Equations
,
Academic Press
, Cambridge, MA.
You do not currently have access to this content.