This paper presents the parametrically excited lateral instabilities of an asymmetrical spherical parallel manipulator (SPM) by means of monodromy matrix method. The linearized equation of motion for the lateral vibrations is developed to analyze the stability problem, resorting to the Floquet theory, which is numerically illustrated. To this end, the parametrically excited unstable regions of the manipulator are visualized to reveal the effect of the system parameters on the stability. Critical parameters, such as rotating speeds of the driving shaft, are identified from the constructed parametric stability chart for the manipulator.
References
1.
Asada
, H.
, and Granito
, J.
, 1985
, “Kinematic and Static Characterization of Wrist Joints and Their Optimal Design
,” IEEE International Conference on Robotics Automation
(ICRA
), St. Louis, MO, Mar. 25–28, pp. 244
–250
.2.
Gosselin
, C.
, and Hamel
, J.
, 1994
, “The Agile Eye: A High-Performance Three-Degree-of-Freedom Camera-Orienting Device
,” IEEE International Conference Robotics Automation
(ICRA
), San Diego, CA, May 8–13, pp. 781
–786
.3.
Li
, T.
, and Payandeh
, S.
, 2002
, “Design of Spherical Parallel Mechanisms for Application to Laparoscopic Surgery
,” Robotica
, 20
(2
), pp. 133
–138
.4.
Bonev
, I.
, and Gosselin
, C.
, 2006
, “Analytical Determination of the Workspace of Symmetrical Spherical Parallel Mechanisms
,” IEEE Trans. Rob.
, 22
(5
), pp. 1011
–1017
.5.
Bidault
, F.
, Teng
, C.-P.
, and Angeles
, J.
, 2001
, “Structural Optimization of a Spherical Parallel Manipulator Using a Two-Level Approach
,” ASME
Paper No. DETC2001/DAC-21030.6.
Bai
, S.
, 2010
, “Optimum Design of Spherical Parallel Manipulator for a Prescribed Workspace
,” Mech. Mach. Theory
, 45
(2
), pp. 200
–211
.7.
Wu
, G.
, Caro
, S.
, Bai
, S.
, and Kepler
, J.
, 2014
, “Dynamic Modeling and Design Optimization of a 3-DOF Spherical Parallel Manipulator
,” Rob. Autom. Syst.
, 62
(10
), pp. 1377
–1386
.8.
Karouia
, M.
, and Hervé
, J.
, 2000
, “A Three-Dof Tripod for Generating Spherical Rotation
,” Advances in Robot Kinematics
, J.
Lenarčič
and M.
Stanišič
, eds., Springer
, Netherlands
, pp. 395
–402
.9.
Kong
, K.
, and Gosselin
, C.
, 2004
, “Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators
,” Int. J. Rob. Res.
, 23
(3
), pp. 237
–245
.10.
Urízar
, M.
, Petuya
, V.
, Altuzarra
, O.
, Diez
, M.
, and Hernández
, A.
, 2015
, “Non-Singular Transitions Based Design Methodology for Parallel Manipulators
,” Mech. Mach. Theory
, 91
, pp. 168
–186
.11.
Wu
, G.
, Caro
, S.
, and Wang
, J.
, 2015
, “Design and Transmission Analysis of an Asymmetrical Spherical Parallel Manipulator
,” Mech. Mach. Theory
, 94
, pp. 119
–131
.12.
Wu
, G.
, and Zou
, P.
, 2016
, “Comparison of 3-dof Asymmetrical Spherical Parallel Manipulators With Respect to Motion/Force Transmission and Stiffness
,” Mech. Mach. Theory
, 105
, pp. 369
–387
.13.
Landuré
, J.
, and Gosselin
, C.
, 2018
, “Kinematic Analysis of a Novel Kinematically Redundant Spherical Parallel Manipulator
,” ASME J. Mech. Rob.
, 10
(2
), p. 021007
.14.
Rosenberg
, R. M.
, 1958
, “On the Dynamical Behavior of Rotating Shafts Driven by Universal (Hooke) Couplings
,” ASME J. Appl. Mech.
, 25
(1
), pp. 47
–51
.15.
Porter
, B.
, 1961
, “A Theoretical Analysis of the Torsional Oscillation of a System Incorporating a Hooke's Joint
,” Arch. J. Mech. Eng. Sci.
, 3
(4
), pp. 324
–329
.16.
Floquet
, G.
, 1883
, “Sur Les Équations Différentielles Linéaires à Coefficients Périodiques
,” Ann. De L'École Normale Supérieure
, 12
, pp. 47
–88
.17.
Kuchment
, P. A.
, 1993
, Floquet Theory for Partial Differential Equations
, Birkhauser Verlag
, Basel, Switzerland.18.
Éidinov
, M. S.
, Nyrko
, V. A.
, Éidinov
, R. M.
, and Gashukov
, V. S.
, 1976
, “Torsional Vibrations of a System With Hooke's Joint
,” Sov. Appl. Mech
, 12
(3
), pp. 291
–298
.19.
Asokanthan
, S. F.
, and Hwang
, M. C.
, 1996
, “Torsional Instabilities in a System Incorporating a Hooke's Joint
,” ASME J. Vib. Acoust.
, 118
(3
), pp. 83
–91
.20.
Chang
, S. I.
, 2000
, “Torsional Instabilities and Non-Linear Oscillation of a System Incorporating a Hooke's Joint
,” J. Sound Vib.
, 229
(4
), pp. 993
–1002
.21.
Bulut
, G.
, and Parlar
, Z.
, 2011
, “Dynamic Stability of a Shaft System Connected Through a Hooke's Joint
,” Mech. Mach. Theory
, 46
(11
), pp. 1689
–1695
.22.
Bulut
, G.
, 2014
, “Dynamic Stability Analysis of Torsional Vibrations of a Shaft System Connected by a Hooke's Joint Through a Continuous System Model
,” J. Sound Vib.
, 333
(16
), pp. 3691
–3701
.23.
Ota
, H.
, Kato
, M.
, and Sugita
, H.
, 1984
, “Lateral Vibrations of a Rotating Shaft Driven by a Universal Joint–1st Report
,” Bull. JSME
, 27
(231
), pp. 2002
–2007
.24.
Ota
, H.
, Kato
, M.
, and Sugita
, H.
, 1985
, “Lateral Vibrations of a Rotating Shaft Driven by a Universal Joint–2nd Report
,” Bull. JSME
, 28
(242
), pp. 1749
–1755
.25.
Kato
, M.
, and Ota
, H.
, 1990
, “Lateral Excitation of a Rotating Shaft Driven by a Universal Joint With Friction
,” ASME J. Vib. Acoust.
, 112
(3
), pp. 298
–303
.26.
Sheu
, P. P.
, Chieng
, W. H.
, and Lee
, A. C.
, 1996
, “Modeling and Analysis of the Intermediate Shaft Between Two Universal Joints
,” ASME J. Vib. Acoust.
, 118
(1
), pp. 88
–99
.27.
Saigo
, M.
, Okada
, Y.
, and Ono
, K.
, 1997
, “Self-Excited Vibration Caused by Internal Friction in Universal Joints and Its Stabilizing Method
,” ASME J. Vib. Acoust.
, 119
(2
), pp. 221
–229
.28.
Mazzei
, A. J.
, Jr., Argento
, A.
, and Scott
, R. A.
, 1999
, “Dynamic Stability of a Rotating Shaft Driven Through a Universal Joint
,” J. Sound Vib.
, 222
(1
), pp. 19
–47
.29.
Mazzei
, A. J.
, and Scott
, R. A.
, 2001
, “Principal Parametric Resonance Zones of a Rotating Rigid Shaft Driven Through a Universal Joint
,” J. Sound Vib.
, 244
(3
), pp. 555
–562
.30.
Kang
, Y.
, Shen
, Y.
, Zhang
, W.
, and Yang
, J.
, 2014
, “Stability Region of Floating Intermediate Support in a Shaft System With Multiple Universal Joints
,” J. Mech. Sci. Technol.
, 28
(7
), pp. 2733
–2742
.31.
Soltan Rezaee
, M.
, Ghazavi
, M.-R.
, and Najafi
, A.
, 2017
, “Mathematical Modelling for Vibration Evaluation of Powertrain Systems
,” Modelling, Simulation and Identification/854: Intelligent Systems and Control
, Calgary, AB, Canada, July 19–20, pp. 19
–20
.32.
Desmidt
, H. A.
, Smith
, E. C.
, and Wang
, K. W.
, 2002
, “Coupled Torsion-Lateral Stability of a Shaft-Disk System Driven Through a Universal Joint
,” ASME J. Appl. Mech.
, 69
(3
), pp. 261
–273
.33.
Pierrot
, F.
, Company
, O.
, Krut
, S.
, and Nabat
, V.
, 2006
, “Four-Dof PKM with Articulated Travelling-Plate
,” Parallel Kinematics Seminar (PKS'06)
, Chemnitz, Germany, Apr. 25–26, pp. 25
–26
.34.
Porter
, B.
, and Gregory
, R. W.
, 1963
, “Non-Linear Torsional Oscillation of a System Incorporating a Hooke's Joint
,” Arch. J. Mech. Eng. Sci.
, 5
(2
), pp. 191
–209
.35.
Wu
, G.
, and Zou
, P.
, 2017
, “Stiffness Analysis and Comparison of a Biglide Parallel Grinder With Alternative Spatial Modular Parallelograms
,” Robotica
, 35
(6
), pp. 1310
–1326
.36.
Gosselin
, C.
, 1990
, “Stiffness Mapping for Parallel Manipulators
,” IEEE Trans. Rob. Autom.
, 6
(3
), pp. 377
–382
.37.
Shigley
, J.
, Mischke
, C.
, and Brown
, T.
, 2004
, Standard Handbook of Machine Design
, McGraw-Hill
, New York.38.
Nikravesh
, P.
, 1988
, Computer-Aided Analysis of Mechanical Systems
, Prentice Hall
, Englewood Cliffs, NJ
.39.
Jalón
, J. G. D.
, and Bayo
, E.
, 1994
, Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
, Springer
, New York
.40.
Abramowitz
, M.
, Stegun
, I. A.
, and Romain
, J. E.
, 1972
, Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables
, Dover Publications
, Mineola, NY.41.
Teschl
, G.
, 2012
, Ordinary Differential Equations and Dynamical Systems
, American Mathematical Society
, Providence
, RI.42.
Chicone
, C.
, 2006
, Ordinary Differential Equations With Applications
, Springer
, New York
.43.
Szymkiewicz
, R.
, 1971
, Numerical Solution of Ordinary Differential Equations
, Academic Press
, Cambridge, MA.Copyright © 2018 by ASME
You do not currently have access to this content.